gem5/src/mem/abstract_mem.cc
Andreas Hansson ffb6aec603 AddrRange: Transition from Range<T> to AddrRange
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.

In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.

--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
2012-09-19 06:15:44 -04:00

605 lines
20 KiB
C++

/*
* Copyright (c) 2010-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
* Andreas Hansson
*/
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/user.h>
#include <fcntl.h>
#include <unistd.h>
#include <zlib.h>
#include <cerrno>
#include <cstdio>
#include <climits>
#include <iostream>
#include <string>
#include "arch/registers.hh"
#include "config/the_isa.hh"
#include "debug/LLSC.hh"
#include "debug/MemoryAccess.hh"
#include "mem/abstract_mem.hh"
#include "mem/packet_access.hh"
#include "sim/system.hh"
using namespace std;
AbstractMemory::AbstractMemory(const Params *p) :
MemObject(p), range(params()->range), pmemAddr(NULL),
confTableReported(p->conf_table_reported), inAddrMap(p->in_addr_map),
_system(NULL)
{
if (size() % TheISA::PageBytes != 0)
panic("Memory Size not divisible by page size\n");
if (params()->null)
return;
if (params()->file == "") {
int map_flags = MAP_ANON | MAP_PRIVATE;
pmemAddr = (uint8_t *)mmap(NULL, size(),
PROT_READ | PROT_WRITE, map_flags, -1, 0);
} else {
int map_flags = MAP_PRIVATE;
int fd = open(params()->file.c_str(), O_RDONLY);
long _size = lseek(fd, 0, SEEK_END);
if (_size != range.size()) {
fatal("Specified size %d does not match file %s %d\n",
range.size(), params()->file, _size);
}
lseek(fd, 0, SEEK_SET);
pmemAddr = (uint8_t *)mmap(NULL, roundUp(_size, sysconf(_SC_PAGESIZE)),
PROT_READ | PROT_WRITE, map_flags, fd, 0);
}
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
if (params()->file == "")
fatal("Could not mmap!\n");
else
fatal("Could not find file: %s\n", params()->file);
}
//If requested, initialize all the memory to 0
if (p->zero)
memset(pmemAddr, 0, size());
}
AbstractMemory::~AbstractMemory()
{
if (pmemAddr)
munmap((char*)pmemAddr, size());
}
void
AbstractMemory::regStats()
{
using namespace Stats;
assert(system());
bytesRead
.init(system()->maxMasters())
.name(name() + ".bytes_read")
.desc("Number of bytes read from this memory")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
bytesRead.subname(i, system()->getMasterName(i));
}
bytesInstRead
.init(system()->maxMasters())
.name(name() + ".bytes_inst_read")
.desc("Number of instructions bytes read from this memory")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
bytesInstRead.subname(i, system()->getMasterName(i));
}
bytesWritten
.init(system()->maxMasters())
.name(name() + ".bytes_written")
.desc("Number of bytes written to this memory")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
bytesWritten.subname(i, system()->getMasterName(i));
}
numReads
.init(system()->maxMasters())
.name(name() + ".num_reads")
.desc("Number of read requests responded to by this memory")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
numReads.subname(i, system()->getMasterName(i));
}
numWrites
.init(system()->maxMasters())
.name(name() + ".num_writes")
.desc("Number of write requests responded to by this memory")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
numWrites.subname(i, system()->getMasterName(i));
}
numOther
.init(system()->maxMasters())
.name(name() + ".num_other")
.desc("Number of other requests responded to by this memory")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
numOther.subname(i, system()->getMasterName(i));
}
bwRead
.name(name() + ".bw_read")
.desc("Total read bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesRead)
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
bwRead.subname(i, system()->getMasterName(i));
}
bwInstRead
.name(name() + ".bw_inst_read")
.desc("Instruction read bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesInstRead)
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
bwInstRead.subname(i, system()->getMasterName(i));
}
bwWrite
.name(name() + ".bw_write")
.desc("Write bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesWritten)
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
bwWrite.subname(i, system()->getMasterName(i));
}
bwTotal
.name(name() + ".bw_total")
.desc("Total bandwidth to/from this memory (bytes/s)")
.precision(0)
.prereq(bwTotal)
.flags(total | nozero | nonan)
;
for (int i = 0; i < system()->maxMasters(); i++) {
bwTotal.subname(i, system()->getMasterName(i));
}
bwRead = bytesRead / simSeconds;
bwInstRead = bytesInstRead / simSeconds;
bwWrite = bytesWritten / simSeconds;
bwTotal = (bytesRead + bytesWritten) / simSeconds;
}
AddrRange
AbstractMemory::getAddrRange() const
{
return range;
}
// Add load-locked to tracking list. Should only be called if the
// operation is a load and the LLSC flag is set.
void
AbstractMemory::trackLoadLocked(PacketPtr pkt)
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
// first we check if we already have a locked addr for this
// xc. Since each xc only gets one, we just update the
// existing record with the new address.
list<LockedAddr>::iterator i;
for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
if (i->matchesContext(req)) {
DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n",
req->contextId(), paddr);
i->addr = paddr;
return;
}
}
// no record for this xc: need to allocate a new one
DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n",
req->contextId(), paddr);
lockedAddrList.push_front(LockedAddr(req));
}
// Called on *writes* only... both regular stores and
// store-conditional operations. Check for conventional stores which
// conflict with locked addresses, and for success/failure of store
// conditionals.
bool
AbstractMemory::checkLockedAddrList(PacketPtr pkt)
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
bool isLLSC = pkt->isLLSC();
// Initialize return value. Non-conditional stores always
// succeed. Assume conditional stores will fail until proven
// otherwise.
bool allowStore = !isLLSC;
// Iterate over list. Note that there could be multiple matching records,
// as more than one context could have done a load locked to this location.
// Only remove records when we succeed in finding a record for (xc, addr);
// then, remove all records with this address. Failed store-conditionals do
// not blow unrelated reservations.
list<LockedAddr>::iterator i = lockedAddrList.begin();
if (isLLSC) {
while (i != lockedAddrList.end()) {
if (i->addr == paddr && i->matchesContext(req)) {
// it's a store conditional, and as far as the memory system can
// tell, the requesting context's lock is still valid.
DPRINTF(LLSC, "StCond success: context %d addr %#x\n",
req->contextId(), paddr);
allowStore = true;
break;
}
// If we didn't find a match, keep searching! Someone else may well
// have a reservation on this line here but we may find ours in just
// a little while.
i++;
}
req->setExtraData(allowStore ? 1 : 0);
}
// LLSCs that succeeded AND non-LLSC stores both fall into here:
if (allowStore) {
// We write address paddr. However, there may be several entries with a
// reservation on this address (for other contextIds) and they must all
// be removed.
i = lockedAddrList.begin();
while (i != lockedAddrList.end()) {
if (i->addr == paddr) {
DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n",
i->contextId, paddr);
i = lockedAddrList.erase(i);
} else {
i++;
}
}
}
return allowStore;
}
#if TRACING_ON
#define CASE(A, T) \
case sizeof(T): \
DPRINTF(MemoryAccess,"%s of size %i on address 0x%x data 0x%x\n", \
A, pkt->getSize(), pkt->getAddr(), pkt->get<T>()); \
break
#define TRACE_PACKET(A) \
do { \
switch (pkt->getSize()) { \
CASE(A, uint64_t); \
CASE(A, uint32_t); \
CASE(A, uint16_t); \
CASE(A, uint8_t); \
default: \
DPRINTF(MemoryAccess, "%s of size %i on address 0x%x\n", \
A, pkt->getSize(), pkt->getAddr()); \
DDUMP(MemoryAccess, pkt->getPtr<uint8_t>(), pkt->getSize());\
} \
} while (0)
#else
#define TRACE_PACKET(A)
#endif
void
AbstractMemory::access(PacketPtr pkt)
{
assert(pkt->getAddr() >= range.start &&
(pkt->getAddr() + pkt->getSize() - 1) <= range.end);
if (pkt->memInhibitAsserted()) {
DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
pkt->getAddr());
return;
}
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - range.start;
if (pkt->cmd == MemCmd::SwapReq) {
TheISA::IntReg overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
if (!pmemAddr)
panic("Swap only works if there is real memory (i.e. null=False)");
assert(sizeof(TheISA::IntReg) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem)
std::memcpy(hostAddr, &overwrite_val, pkt->getSize());
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Read/Write");
numOther[pkt->req->masterId()]++;
} else if (pkt->isRead()) {
assert(!pkt->isWrite());
if (pkt->isLLSC()) {
trackLoadLocked(pkt);
}
if (pmemAddr)
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET(pkt->req->isInstFetch() ? "IFetch" : "Read");
numReads[pkt->req->masterId()]++;
bytesRead[pkt->req->masterId()] += pkt->getSize();
if (pkt->req->isInstFetch())
bytesInstRead[pkt->req->masterId()] += pkt->getSize();
} else if (pkt->isWrite()) {
if (writeOK(pkt)) {
if (pmemAddr)
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Write");
numWrites[pkt->req->masterId()]++;
bytesWritten[pkt->req->masterId()] += pkt->getSize();
}
} else if (pkt->isInvalidate()) {
// no need to do anything
} else {
panic("unimplemented");
}
if (pkt->needsResponse()) {
pkt->makeResponse();
}
}
void
AbstractMemory::functionalAccess(PacketPtr pkt)
{
assert(pkt->getAddr() >= range.start &&
(pkt->getAddr() + pkt->getSize() - 1) <= range.end);
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - range.start;
if (pkt->isRead()) {
if (pmemAddr)
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET("Read");
pkt->makeResponse();
} else if (pkt->isWrite()) {
if (pmemAddr)
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
TRACE_PACKET("Write");
pkt->makeResponse();
} else if (pkt->isPrint()) {
Packet::PrintReqState *prs =
dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
assert(prs);
// Need to call printLabels() explicitly since we're not going
// through printObj().
prs->printLabels();
// Right now we just print the single byte at the specified address.
ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
} else {
panic("AbstractMemory: unimplemented functional command %s",
pkt->cmdString());
}
}
void
AbstractMemory::serialize(ostream &os)
{
if (!pmemAddr)
return;
gzFile compressedMem;
string filename = name() + ".physmem";
long _size = range.size();
SERIALIZE_SCALAR(filename);
SERIALIZE_SCALAR(_size);
// write memory file
string thefile = Checkpoint::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open physical memory checkpoint file '%s'\n", filename);
}
compressedMem = gzdopen(fd, "wb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
uint64_t pass_size = 0;
// gzwrite fails if (int)len < 0 (gzwrite returns int)
for (uint64_t written = 0; written < size(); written += pass_size) {
pass_size = (uint64_t)INT_MAX < (size() - written) ?
(uint64_t)INT_MAX : (size() - written);
if (gzwrite(compressedMem, pmemAddr + written,
(unsigned int) pass_size) != (int)pass_size) {
fatal("Write failed on physical memory checkpoint file '%s'\n",
filename);
}
}
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
list<LockedAddr>::iterator i = lockedAddrList.begin();
vector<Addr> lal_addr;
vector<int> lal_cid;
while (i != lockedAddrList.end()) {
lal_addr.push_back(i->addr);
lal_cid.push_back(i->contextId);
i++;
}
arrayParamOut(os, "lal_addr", lal_addr);
arrayParamOut(os, "lal_cid", lal_cid);
}
void
AbstractMemory::unserialize(Checkpoint *cp, const string &section)
{
if (!pmemAddr)
return;
gzFile compressedMem;
long *tempPage;
long *pmem_current;
uint64_t curSize;
uint32_t bytesRead;
const uint32_t chunkSize = 16384;
string filename;
UNSERIALIZE_SCALAR(filename);
filename = cp->cptDir + "/" + filename;
// mmap memoryfile
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Can't open physical memory checkpoint file '%s'", filename);
}
compressedMem = gzdopen(fd, "rb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
// unmap file that was mmapped in the constructor
// This is done here to make sure that gzip and open don't muck with our
// nice large space of memory before we reallocate it
munmap((char*)pmemAddr, size());
long _size;
UNSERIALIZE_SCALAR(_size);
if (_size > params()->range.size())
fatal("Memory size has changed! size %lld, param size %lld\n",
_size, params()->range.size());
pmemAddr = (uint8_t *)mmap(NULL, size(),
PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap physical memory!\n");
}
curSize = 0;
tempPage = (long*)malloc(chunkSize);
if (tempPage == NULL)
fatal("Unable to malloc memory to read file %s\n", filename);
/* Only copy bytes that are non-zero, so we don't give the VM system hell */
while (curSize < size()) {
bytesRead = gzread(compressedMem, tempPage, chunkSize);
if (bytesRead == 0)
break;
assert(bytesRead % sizeof(long) == 0);
for (uint32_t x = 0; x < bytesRead / sizeof(long); x++)
{
if (*(tempPage+x) != 0) {
pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
*pmem_current = *(tempPage+x);
}
}
curSize += bytesRead;
}
free(tempPage);
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
vector<Addr> lal_addr;
vector<int> lal_cid;
arrayParamIn(cp, section, "lal_addr", lal_addr);
arrayParamIn(cp, section, "lal_cid", lal_cid);
for(int i = 0; i < lal_addr.size(); i++)
lockedAddrList.push_front(LockedAddr(lal_addr[i], lal_cid[i]));
}