6ff9439afe
are ours arch/alpha/alpha_linux_process.hh: arch/alpha/alpha_tru64_process.hh: base/loader/object_file.cc: base/loader/object_file.hh: sim/process.cc: sim/process.hh: remove $Id$ string cpu/ozone/cpu.cc: cpu/ozone/cpu_impl.hh: cpu/ozone/ea_list.cc: cpu/ozone/ea_list.hh: kern/linux/sched.hh: kern/linux/thread_info.hh: Add M5 Copyright cpu/trace/opt_cpu.cc: dev/rtcreg.h: nit kern/linux/aligned.hh: kern/linux/hwrpb.hh: util/oprofile-top.py: util/stats/db.py: util/stats/dbinit.py: util/stats/display.py: util/stats/info.py: util/stats/print.py: util/stats/stats.py: Cleanup copyright --HG-- extra : convert_revision : 4274e9121ef7543e0b3999b31e935edb19c54d46
767 lines
22 KiB
Python
767 lines
22 KiB
Python
# Copyright (c) 2003-2004 The Regents of The University of Michigan
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are
|
|
# met: redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer;
|
|
# redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution;
|
|
# neither the name of the copyright holders nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
from __future__ import division
|
|
import operator, re, types
|
|
|
|
source = None
|
|
display_run = 0
|
|
global globalTicks
|
|
globalTicks = None
|
|
|
|
def total(f):
|
|
if isinstance(f, FormulaStat):
|
|
v = f.value
|
|
else:
|
|
v = f
|
|
|
|
f = FormulaStat()
|
|
if isinstance(v, (list, tuple)):
|
|
f.value = reduce(operator.add, v)
|
|
else:
|
|
f.value = v
|
|
|
|
return f
|
|
|
|
def unaryop(op, f):
|
|
if isinstance(f, FormulaStat):
|
|
v = f.value
|
|
else:
|
|
v = f
|
|
|
|
if isinstance(v, (list, tuple)):
|
|
return map(op, v)
|
|
else:
|
|
return op(v)
|
|
|
|
def zerodiv(lv, rv):
|
|
if rv == 0.0:
|
|
return 0.0
|
|
else:
|
|
return operator.truediv(lv, rv)
|
|
|
|
def wrapop(op, lv, rv):
|
|
if isinstance(lv, str):
|
|
return lv
|
|
|
|
if isinstance(rv, str):
|
|
return rv
|
|
|
|
return op(lv, rv)
|
|
|
|
def same(lrun, rrun):
|
|
for lx,rx in zip(lrun.keys(),rrun.keys()):
|
|
if lx != rx:
|
|
print 'lx != rx'
|
|
print lx, rx
|
|
print lrun.keys()
|
|
print rrun.keys()
|
|
return False
|
|
for ly,ry in zip(lrun[lx].keys(),rrun[rx].keys()):
|
|
if ly != ry:
|
|
print 'ly != ry'
|
|
print ly, ry
|
|
print lrun[lx].keys()
|
|
print rrun[rx].keys()
|
|
return False
|
|
return True
|
|
|
|
|
|
def binaryop(op, lf, rf):
|
|
result = {}
|
|
|
|
if isinstance(lf, FormulaStat) and isinstance(rf, FormulaStat):
|
|
lv = lf.value
|
|
rv = rf.value
|
|
|
|
theruns = []
|
|
for r in lv.keys():
|
|
if rv.has_key(r):
|
|
if same(lv[r], rv[r]):
|
|
theruns.append(r)
|
|
else:
|
|
raise AttributeError
|
|
|
|
for run in theruns:
|
|
result[run] = {}
|
|
for x in lv[run].keys():
|
|
result[run][x] = {}
|
|
for y in lv[run][x].keys():
|
|
result[run][x][y] = wrapop(op, lv[run][x][y],
|
|
rv[run][x][y])
|
|
elif isinstance(lf, FormulaStat):
|
|
lv = lf.value
|
|
for run in lv.keys():
|
|
result[run] = {}
|
|
for x in lv[run].keys():
|
|
result[run][x] = {}
|
|
for y in lv[run][x].keys():
|
|
result[run][x][y] = wrapop(op, lv[run][x][y], rf)
|
|
elif isinstance(rf, FormulaStat):
|
|
rv = rf.value
|
|
for run in rv.keys():
|
|
result[run] = {}
|
|
for x in rv[run].keys():
|
|
result[run][x] = {}
|
|
for y in rv[run][x].keys():
|
|
result[run][x][y] = wrapop(op, lf, rv[run][x][y])
|
|
|
|
return result
|
|
|
|
def sums(x, y):
|
|
if isinstance(x, (list, tuple)):
|
|
return map(lambda x, y: x + y, x, y)
|
|
else:
|
|
return x + y
|
|
|
|
def alltrue(seq):
|
|
return reduce(lambda x, y: x and y, seq)
|
|
|
|
def allfalse(seq):
|
|
return not reduce(lambda x, y: x or y, seq)
|
|
|
|
def enumerate(seq):
|
|
return map(None, range(len(seq)), seq)
|
|
|
|
def cmp(a, b):
|
|
if a < b:
|
|
return -1
|
|
elif a == b:
|
|
return 0
|
|
else:
|
|
return 1
|
|
|
|
class Statistic(object):
|
|
|
|
def __init__(self, data):
|
|
self.__dict__.update(data.__dict__)
|
|
if not self.__dict__.has_key('value'):
|
|
self.__dict__['value'] = None
|
|
if not self.__dict__.has_key('bins'):
|
|
self.__dict__['bins'] = None
|
|
if not self.__dict__.has_key('ticks'):
|
|
self.__dict__['ticks'] = None
|
|
if 'vc' not in self.__dict__:
|
|
self.vc = {}
|
|
|
|
def __getattribute__(self, attr):
|
|
if attr == 'ticks':
|
|
if self.__dict__['ticks'] != globalTicks:
|
|
self.__dict__['value'] = None
|
|
self.__dict__['ticks'] = globalTicks
|
|
return self.__dict__['ticks']
|
|
if attr == 'value':
|
|
if self.__dict__['ticks'] != globalTicks:
|
|
if self.__dict__['ticks'] != None and \
|
|
len(self.__dict__['ticks']) == 1:
|
|
self.vc[self.__dict__['ticks'][0]] = self.__dict__['value']
|
|
self.__dict__['ticks'] = globalTicks
|
|
if len(globalTicks) == 1 and self.vc.has_key(globalTicks[0]):
|
|
self.__dict__['value'] = self.vc[globalTicks[0]]
|
|
else:
|
|
self.__dict__['value'] = None
|
|
if self.__dict__['value'] == None:
|
|
self.__dict__['value'] = self.getValue()
|
|
return self.__dict__['value']
|
|
else:
|
|
return super(Statistic, self).__getattribute__(attr)
|
|
|
|
def __setattr__(self, attr, value):
|
|
if attr == 'bins' or attr == 'ticks':
|
|
if attr == 'bins':
|
|
if value is not None:
|
|
value = source.getBin(value)
|
|
#elif attr == 'ticks' and type(value) is str:
|
|
# value = [ int(x) for x in value.split() ]
|
|
|
|
self.__dict__[attr] = value
|
|
self.__dict__['value'] = None
|
|
self.vc = {}
|
|
else:
|
|
super(Statistic, self).__setattr__(attr, value)
|
|
|
|
def getValue(self):
|
|
raise AttributeError, 'getValue() must be defined'
|
|
|
|
def zero(self):
|
|
return False
|
|
|
|
def __ne__(self, other):
|
|
return not (self == other)
|
|
|
|
def __str__(self):
|
|
return '%f' % (float(self))
|
|
|
|
class FormulaStat(object):
|
|
def __add__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.add, self, other)
|
|
return f
|
|
def __sub__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.sub, self, other)
|
|
return f
|
|
def __mul__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.mul, self, other)
|
|
return f
|
|
def __truediv__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(zerodiv, self, other)
|
|
return f
|
|
def __mod__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.mod, self, other)
|
|
return f
|
|
def __radd__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.add, other, self)
|
|
return f
|
|
def __rsub__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.sub, other, self)
|
|
return f
|
|
def __rmul__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.mul, other, self)
|
|
return f
|
|
def __rtruediv__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(zerodiv, other, self)
|
|
return f
|
|
def __rmod__(self, other):
|
|
f = FormulaStat()
|
|
f.value = binaryop(operator.mod, other, self)
|
|
return f
|
|
def __neg__(self):
|
|
f = FormulaStat()
|
|
f.value = unaryop(operator.neg, self)
|
|
return f
|
|
def __getitem__(self, idx):
|
|
f = FormulaStat()
|
|
f.value = {}
|
|
for key in self.value.keys():
|
|
f.value[key] = {}
|
|
f.value[key][0] = {}
|
|
f.value[key][0][0] = self.value[key][idx][0]
|
|
return f
|
|
|
|
def __float__(self):
|
|
if isinstance(self.value, FormulaStat):
|
|
return float(self.value)
|
|
if not self.value.has_key(display_run):
|
|
return (1e300*1e300)
|
|
if len(self.value[display_run]) == 1:
|
|
return self.value[display_run][0][0]
|
|
else:
|
|
#print self.value[display_run]
|
|
return self.value[display_run][4][0]
|
|
#raise ValueError
|
|
|
|
def display(self):
|
|
import display
|
|
d = display.VectorDisplay()
|
|
d.flags = 0
|
|
d.precision = 1
|
|
d.name = 'formula'
|
|
d.desc = 'formula'
|
|
val = self.value[display_run]
|
|
d.value = [ val[x][0] for x in val.keys() ]
|
|
d.display()
|
|
|
|
|
|
class Scalar(Statistic,FormulaStat):
|
|
def getValue(self):
|
|
return source.data(self, self.bins, self.ticks)
|
|
|
|
def display(self):
|
|
import display
|
|
p = display.Print()
|
|
p.name = self.name
|
|
p.desc = self.desc
|
|
p.value = float(self)
|
|
p.flags = self.flags
|
|
p.precision = self.precision
|
|
if display.all or (self.flags & flags.printable):
|
|
p.display()
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name
|
|
|
|
def __eq__(self, other):
|
|
return self.value == other.value
|
|
|
|
def __isub__(self, other):
|
|
self.value -= other.value
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
self.value += other.value
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
self.value /= other
|
|
return self
|
|
|
|
class Vector(Statistic,FormulaStat):
|
|
def getValue(self):
|
|
return source.data(self, self.bins, self.ticks);
|
|
|
|
def display(self):
|
|
import display
|
|
if not display.all and not (self.flags & flags.printable):
|
|
return
|
|
|
|
d = display.VectorDisplay()
|
|
d.__dict__.update(self.__dict__)
|
|
d.display()
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and \
|
|
len(self.value) == len(other.value)
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(self.value, (list, tuple)) != \
|
|
isinstance(other.value, (list, tuple)):
|
|
return False
|
|
|
|
if isinstance(self.value, (list, tuple)):
|
|
if len(self.value) != len(other.value):
|
|
return False
|
|
else:
|
|
for v1,v2 in zip(self.value, other.value):
|
|
if v1 != v2:
|
|
return False
|
|
return True
|
|
else:
|
|
return self.value == other.value
|
|
|
|
def __isub__(self, other):
|
|
self.value = binaryop(operator.sub, self.value, other.value)
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
self.value = binaryop(operator.add, self.value, other.value)
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
if isinstance(self.value, (list, tuple)):
|
|
for i in xrange(len(self.value)):
|
|
self.value[i] /= other
|
|
else:
|
|
self.value /= other
|
|
return self
|
|
|
|
class Formula(Vector):
|
|
def getValue(self):
|
|
formula = re.sub(':', '__', self.formula)
|
|
x = eval(formula, source.stattop)
|
|
return x.value
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and \
|
|
compare(self.dist, other.dist)
|
|
|
|
def __eq__(self, other):
|
|
return self.value == other.value
|
|
|
|
def __isub__(self, other):
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
return self
|
|
|
|
class SimpleDist(object):
|
|
def __init__(self, sums, squares, samples):
|
|
self.sums = sums
|
|
self.squares = squares
|
|
self.samples = samples
|
|
|
|
def getValue(self):
|
|
return 0.0
|
|
|
|
def display(self, name, desc, flags, precision):
|
|
import display
|
|
p = display.Print()
|
|
p.flags = flags
|
|
p.precision = precision
|
|
|
|
if self.samples > 0:
|
|
p.name = name + ".mean"
|
|
p.value = self.sums / self.samples
|
|
p.display()
|
|
|
|
p.name = name + ".stdev"
|
|
if self.samples > 1:
|
|
var = (self.samples * self.squares - self.sums ** 2) \
|
|
/ (self.samples * (self.samples - 1))
|
|
if var >= 0:
|
|
p.value = math.sqrt(var)
|
|
else:
|
|
p.value = 'NaN'
|
|
else:
|
|
p.value = 0.0
|
|
p.display()
|
|
|
|
p.name = name + ".samples"
|
|
p.value = self.samples
|
|
p.display()
|
|
|
|
def comparable(self, other):
|
|
return True
|
|
|
|
def __eq__(self, other):
|
|
return self.sums == other.sums and self.squares == other.squares and \
|
|
self.samples == other.samples
|
|
|
|
def __isub__(self, other):
|
|
self.sums -= other.sums
|
|
self.squares -= other.squares
|
|
self.samples -= other.samples
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
self.sums += other.sums
|
|
self.squares += other.squares
|
|
self.samples += other.samples
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
self.sums /= other
|
|
self.squares /= other
|
|
self.samples /= other
|
|
return self
|
|
|
|
class FullDist(SimpleDist):
|
|
def __init__(self, sums, squares, samples, minval, maxval,
|
|
under, vec, over, min, max, bsize, size):
|
|
self.sums = sums
|
|
self.squares = squares
|
|
self.samples = samples
|
|
self.minval = minval
|
|
self.maxval = maxval
|
|
self.under = under
|
|
self.vec = vec
|
|
self.over = over
|
|
self.min = min
|
|
self.max = max
|
|
self.bsize = bsize
|
|
self.size = size
|
|
|
|
def getValue(self):
|
|
return 0.0
|
|
|
|
def display(self, name, desc, flags, precision):
|
|
import display
|
|
p = display.Print()
|
|
p.flags = flags
|
|
p.precision = precision
|
|
|
|
p.name = name + '.min_val'
|
|
p.value = self.minval
|
|
p.display()
|
|
|
|
p.name = name + '.max_val'
|
|
p.value = self.maxval
|
|
p.display()
|
|
|
|
p.name = name + '.underflow'
|
|
p.value = self.under
|
|
p.display()
|
|
|
|
i = self.min
|
|
for val in self.vec[:-1]:
|
|
p.name = name + '[%d:%d]' % (i, i + self.bsize - 1)
|
|
p.value = val
|
|
p.display()
|
|
i += self.bsize
|
|
|
|
p.name = name + '[%d:%d]' % (i, self.max)
|
|
p.value = self.vec[-1]
|
|
p.display()
|
|
|
|
|
|
p.name = name + '.overflow'
|
|
p.value = self.over
|
|
p.display()
|
|
|
|
SimpleDist.display(self, name, desc, flags, precision)
|
|
|
|
def comparable(self, other):
|
|
return self.min == other.min and self.max == other.max and \
|
|
self.bsize == other.bsize and self.size == other.size
|
|
|
|
def __eq__(self, other):
|
|
return self.sums == other.sums and self.squares == other.squares and \
|
|
self.samples == other.samples
|
|
|
|
def __isub__(self, other):
|
|
self.sums -= other.sums
|
|
self.squares -= other.squares
|
|
self.samples -= other.samples
|
|
|
|
if other.samples:
|
|
self.minval = min(self.minval, other.minval)
|
|
self.maxval = max(self.maxval, other.maxval)
|
|
self.under -= under
|
|
self.vec = map(lambda x,y: x - y, self.vec, other.vec)
|
|
self.over -= over
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
if not self.samples and other.samples:
|
|
self = other
|
|
return self
|
|
|
|
self.sums += other.sums
|
|
self.squares += other.squares
|
|
self.samples += other.samples
|
|
|
|
if other.samples:
|
|
self.minval = min(self.minval, other.minval)
|
|
self.maxval = max(self.maxval, other.maxval)
|
|
self.under += other.under
|
|
self.vec = map(lambda x,y: x + y, self.vec, other.vec)
|
|
self.over += other.over
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
self.sums /= other
|
|
self.squares /= other
|
|
self.samples /= other
|
|
|
|
if self.samples:
|
|
self.under /= other
|
|
for i in xrange(len(self.vec)):
|
|
self.vec[i] /= other
|
|
self.over /= other
|
|
return self
|
|
|
|
class Dist(Statistic):
|
|
def getValue(self):
|
|
return 0.0
|
|
|
|
def display(self):
|
|
import display
|
|
if not display.all and not (self.flags & flags.printable):
|
|
return
|
|
|
|
self.dist.display(self.name, self.desc, self.flags, self.precision)
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and \
|
|
self.dist.compareable(other.dist)
|
|
|
|
def __eq__(self, other):
|
|
return self.dist == other.dist
|
|
|
|
def __isub__(self, other):
|
|
self.dist -= other.dist
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
self.dist += other.dist
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
self.dist /= other
|
|
return self
|
|
|
|
class VectorDist(Statistic):
|
|
def getValue(self):
|
|
return 0.0
|
|
|
|
def display(self):
|
|
import display
|
|
if not display.all and not (self.flags & flags.printable):
|
|
return
|
|
|
|
if isinstance(self.dist, SimpleDist):
|
|
return
|
|
|
|
for dist,sn,sd,i in map(None, self.dist, self.subnames, self.subdescs,
|
|
range(len(self.dist))):
|
|
if len(sn) > 0:
|
|
name = '%s.%s' % (self.name, sn)
|
|
else:
|
|
name = '%s[%d]' % (self.name, i)
|
|
|
|
if len(sd) > 0:
|
|
desc = sd
|
|
else:
|
|
desc = self.desc
|
|
|
|
dist.display(name, desc, self.flags, self.precision)
|
|
|
|
if (self.flags & flags.total) or 1:
|
|
if isinstance(self.dist[0], SimpleDist):
|
|
disttotal = SimpleDist( \
|
|
reduce(sums, [d.sums for d in self.dist]),
|
|
reduce(sums, [d.squares for d in self.dist]),
|
|
reduce(sums, [d.samples for d in self.dist]))
|
|
else:
|
|
disttotal = FullDist( \
|
|
reduce(sums, [d.sums for d in self.dist]),
|
|
reduce(sums, [d.squares for d in self.dist]),
|
|
reduce(sums, [d.samples for d in self.dist]),
|
|
min([d.minval for d in self.dist]),
|
|
max([d.maxval for d in self.dist]),
|
|
reduce(sums, [d.under for d in self.dist]),
|
|
reduce(sums, [d.vec for d in self.dist]),
|
|
reduce(sums, [d.over for d in self.dist]),
|
|
dist[0].min,
|
|
dist[0].max,
|
|
dist[0].bsize,
|
|
dist[0].size)
|
|
|
|
name = '%s.total' % (self.name)
|
|
desc = self.desc
|
|
disttotal.display(name, desc, self.flags, self.precision)
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and \
|
|
alltrue(map(lambda x, y : x.comparable(y),
|
|
self.dist,
|
|
other.dist))
|
|
|
|
def __eq__(self, other):
|
|
return alltrue(map(lambda x, y : x == y, self.dist, other.dist))
|
|
|
|
def __isub__(self, other):
|
|
if isinstance(self.dist, (list, tuple)) and \
|
|
isinstance(other.dist, (list, tuple)):
|
|
for sd,od in zip(self.dist, other.dist):
|
|
sd -= od
|
|
else:
|
|
self.dist -= other.dist
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
if isinstance(self.dist, (list, tuple)) and \
|
|
isinstance(other.dist, (list, tuple)):
|
|
for sd,od in zip(self.dist, other.dist):
|
|
sd += od
|
|
else:
|
|
self.dist += other.dist
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
if isinstance(self.dist, (list, tuple)):
|
|
for dist in self.dist:
|
|
dist /= other
|
|
else:
|
|
self.dist /= other
|
|
return self
|
|
|
|
class Vector2d(Statistic):
|
|
def getValue(self):
|
|
return 0.0
|
|
|
|
def display(self):
|
|
import display
|
|
if not display.all and not (self.flags & flags.printable):
|
|
return
|
|
|
|
d = display.VectorDisplay()
|
|
d.__dict__.update(self.__dict__)
|
|
|
|
if self.__dict__.has_key('ysubnames'):
|
|
ysubnames = list(self.ysubnames)
|
|
slack = self.x - len(ysubnames)
|
|
if slack > 0:
|
|
ysubnames.extend(['']*slack)
|
|
else:
|
|
ysubnames = range(self.x)
|
|
|
|
for x,sname in enumerate(ysubnames):
|
|
o = x * self.y
|
|
d.value = self.value[o:o+self.y]
|
|
d.name = '%s[%s]' % (self.name, sname)
|
|
d.display()
|
|
|
|
if self.flags & flags.total:
|
|
d.value = []
|
|
for y in range(self.y):
|
|
xtot = 0.0
|
|
for x in range(self.x):
|
|
xtot += self.value[y + x * self.x]
|
|
d.value.append(xtot)
|
|
|
|
d.name = self.name + '.total'
|
|
d.display()
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and self.x == other.x and \
|
|
self.y == other.y
|
|
|
|
def __eq__(self, other):
|
|
return True
|
|
|
|
def __isub__(self, other):
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
return self
|
|
|
|
def NewStat(data):
|
|
stat = None
|
|
if data.type == 'SCALAR':
|
|
stat = Scalar(data)
|
|
elif data.type == 'VECTOR':
|
|
stat = Vector(data)
|
|
elif data.type == 'DIST':
|
|
stat = Dist(data)
|
|
elif data.type == 'VECTORDIST':
|
|
stat = VectorDist(data)
|
|
elif data.type == 'VECTOR2D':
|
|
stat = Vector2d(data)
|
|
elif data.type == 'FORMULA':
|
|
stat = Formula(data)
|
|
|
|
return stat
|
|
|