bf80734b2c
Mwait works as follows: 1. A cpu monitors an address of interest (monitor instruction) 2. A cpu calls mwait - this loads the cache line into that cpu's cache. 3. The cpu goes to sleep. 4. When another processor requests write permission for the line, it is evicted from the sleeping cpu's cache. This eviction is forwarded to the sleeping cpu, which then wakes up. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
178 lines
7.4 KiB
Python
178 lines
7.4 KiB
Python
# Copyright (c) 2006-2007 The Regents of The University of Michigan
|
|
# Copyright (c) 2009 Advanced Micro Devices, Inc.
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are
|
|
# met: redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer;
|
|
# redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution;
|
|
# neither the name of the copyright holders nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# Authors: Brad Beckmann
|
|
|
|
import math
|
|
import m5
|
|
from m5.objects import *
|
|
from m5.defines import buildEnv
|
|
from Ruby import create_topology
|
|
from Ruby import send_evicts
|
|
|
|
#
|
|
# Note: the cache latency is only used by the sequencer on fast path hits
|
|
#
|
|
class Cache(RubyCache):
|
|
latency = 3
|
|
|
|
def define_options(parser):
|
|
return
|
|
|
|
def create_system(options, full_system, system, dma_ports, ruby_system):
|
|
|
|
if buildEnv['PROTOCOL'] != 'MI_example':
|
|
panic("This script requires the MI_example protocol to be built.")
|
|
|
|
cpu_sequencers = []
|
|
|
|
#
|
|
# The ruby network creation expects the list of nodes in the system to be
|
|
# consistent with the NetDest list. Therefore the l1 controller nodes must be
|
|
# listed before the directory nodes and directory nodes before dma nodes, etc.
|
|
#
|
|
l1_cntrl_nodes = []
|
|
dir_cntrl_nodes = []
|
|
dma_cntrl_nodes = []
|
|
|
|
#
|
|
# Must create the individual controllers before the network to ensure the
|
|
# controller constructors are called before the network constructor
|
|
#
|
|
block_size_bits = int(math.log(options.cacheline_size, 2))
|
|
|
|
for i in xrange(options.num_cpus):
|
|
#
|
|
# First create the Ruby objects associated with this cpu
|
|
# Only one cache exists for this protocol, so by default use the L1D
|
|
# config parameters.
|
|
#
|
|
cache = Cache(size = options.l1d_size,
|
|
assoc = options.l1d_assoc,
|
|
start_index_bit = block_size_bits)
|
|
|
|
#
|
|
# Only one unified L1 cache exists. Can cache instructions and data.
|
|
#
|
|
l1_cntrl = L1Cache_Controller(version = i,
|
|
cacheMemory = cache,
|
|
send_evictions = send_evicts(options),
|
|
transitions_per_cycle = options.ports,
|
|
clk_domain=system.cpu[i].clk_domain,
|
|
ruby_system = ruby_system)
|
|
|
|
cpu_seq = RubySequencer(version = i,
|
|
icache = cache,
|
|
dcache = cache,
|
|
clk_domain=system.cpu[i].clk_domain,
|
|
ruby_system = ruby_system)
|
|
|
|
l1_cntrl.sequencer = cpu_seq
|
|
exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)
|
|
|
|
# Add controllers and sequencers to the appropriate lists
|
|
cpu_sequencers.append(cpu_seq)
|
|
l1_cntrl_nodes.append(l1_cntrl)
|
|
|
|
# Connect the L1 controllers and the network
|
|
l1_cntrl.requestFromCache = ruby_system.network.slave
|
|
l1_cntrl.responseFromCache = ruby_system.network.slave
|
|
l1_cntrl.forwardToCache = ruby_system.network.master
|
|
l1_cntrl.responseToCache = ruby_system.network.master
|
|
|
|
|
|
phys_mem_size = sum(map(lambda r: r.size(), system.mem_ranges))
|
|
assert(phys_mem_size % options.num_dirs == 0)
|
|
mem_module_size = phys_mem_size / options.num_dirs
|
|
|
|
# Run each of the ruby memory controllers at a ratio of the frequency of
|
|
# the ruby system.
|
|
# clk_divider value is a fix to pass regression.
|
|
ruby_system.memctrl_clk_domain = DerivedClockDomain(
|
|
clk_domain=ruby_system.clk_domain,
|
|
clk_divider=3)
|
|
|
|
for i in xrange(options.num_dirs):
|
|
dir_size = MemorySize('0B')
|
|
dir_size.value = mem_module_size
|
|
dir_cntrl = Directory_Controller(version = i,
|
|
directory = RubyDirectoryMemory(
|
|
version = i, size = dir_size),
|
|
transitions_per_cycle = options.ports,
|
|
ruby_system = ruby_system)
|
|
|
|
exec("ruby_system.dir_cntrl%d = dir_cntrl" % i)
|
|
dir_cntrl_nodes.append(dir_cntrl)
|
|
|
|
# Connect the directory controllers and the network
|
|
dir_cntrl.requestToDir = ruby_system.network.master
|
|
dir_cntrl.dmaRequestToDir = ruby_system.network.master
|
|
|
|
dir_cntrl.responseFromDir = ruby_system.network.slave
|
|
dir_cntrl.dmaResponseFromDir = ruby_system.network.slave
|
|
dir_cntrl.forwardFromDir = ruby_system.network.slave
|
|
|
|
|
|
for i, dma_port in enumerate(dma_ports):
|
|
#
|
|
# Create the Ruby objects associated with the dma controller
|
|
#
|
|
dma_seq = DMASequencer(version = i,
|
|
ruby_system = ruby_system)
|
|
|
|
dma_cntrl = DMA_Controller(version = i,
|
|
dma_sequencer = dma_seq,
|
|
transitions_per_cycle = options.ports,
|
|
ruby_system = ruby_system)
|
|
|
|
exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
|
|
exec("ruby_system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i)
|
|
dma_cntrl_nodes.append(dma_cntrl)
|
|
|
|
# Connect the directory controllers and the network
|
|
dma_cntrl.requestToDir = ruby_system.network.master
|
|
dma_cntrl.responseFromDir = ruby_system.network.slave
|
|
|
|
all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes
|
|
|
|
# Create the io controller and the sequencer
|
|
if full_system:
|
|
io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
|
|
ruby_system._io_port = io_seq
|
|
io_controller = DMA_Controller(version = len(dma_ports),
|
|
dma_sequencer = io_seq,
|
|
ruby_system = ruby_system)
|
|
ruby_system.io_controller = io_controller
|
|
|
|
# Connect the dma controller to the network
|
|
io_controller.responseFromDir = ruby_system.network.master
|
|
io_controller.requestToDir = ruby_system.network.slave
|
|
|
|
all_cntrls = all_cntrls + [io_controller]
|
|
|
|
topology = create_topology(all_cntrls, options)
|
|
return (cpu_sequencers, dir_cntrl_nodes, topology)
|