gem5/src/cpu/inorder/cpu.cc
Andreas Hansson f85286b3de MEM: Add port proxies instead of non-structural ports
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.

The following replacements are made:
FunctionalPort      > PortProxy
TranslatingPort     > SETranslatingPortProxy
VirtualPort         > FSTranslatingPortProxy

--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
2012-01-17 12:55:08 -06:00

1785 lines
49 KiB
C++

/*
* Copyright (c) 2007 MIPS Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Korey Sewell
*
*/
#include <algorithm>
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "config/full_system.hh"
#include "config/the_isa.hh"
#include "cpu/inorder/resources/resource_list.hh"
#include "cpu/inorder/cpu.hh"
#include "cpu/inorder/first_stage.hh"
#include "cpu/inorder/inorder_dyn_inst.hh"
#include "cpu/inorder/pipeline_traits.hh"
#include "cpu/inorder/resource_pool.hh"
#include "cpu/inorder/thread_context.hh"
#include "cpu/inorder/thread_state.hh"
#include "cpu/activity.hh"
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple_thread.hh"
#include "cpu/thread_context.hh"
#include "debug/Activity.hh"
#include "debug/InOrderCPU.hh"
#include "debug/RefCount.hh"
#include "debug/SkedCache.hh"
#include "debug/Quiesce.hh"
#include "params/InOrderCPU.hh"
#include "sim/process.hh"
#include "sim/stat_control.hh"
#if FULL_SYSTEM
#include "cpu/quiesce_event.hh"
#include "sim/system.hh"
#endif
#if THE_ISA == ALPHA_ISA
#include "arch/alpha/osfpal.hh"
#endif
using namespace std;
using namespace TheISA;
using namespace ThePipeline;
InOrderCPU::TickEvent::TickEvent(InOrderCPU *c)
: Event(CPU_Tick_Pri), cpu(c)
{ }
void
InOrderCPU::TickEvent::process()
{
cpu->tick();
}
const char *
InOrderCPU::TickEvent::description()
{
return "InOrderCPU tick event";
}
InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type,
Fault fault, ThreadID _tid, DynInstPtr inst,
CPUEventPri event_pri)
: Event(event_pri), cpu(_cpu)
{
setEvent(e_type, fault, _tid, inst);
}
std::string InOrderCPU::eventNames[NumCPUEvents] =
{
"ActivateThread",
"ActivateNextReadyThread",
"DeactivateThread",
"HaltThread",
"SuspendThread",
"Trap",
"Syscall",
"SquashFromMemStall",
"UpdatePCs"
};
void
InOrderCPU::CPUEvent::process()
{
switch (cpuEventType)
{
case ActivateThread:
cpu->activateThread(tid);
cpu->resPool->activateThread(tid);
break;
case ActivateNextReadyThread:
cpu->activateNextReadyThread();
break;
case DeactivateThread:
cpu->deactivateThread(tid);
cpu->resPool->deactivateThread(tid);
break;
case HaltThread:
cpu->haltThread(tid);
cpu->resPool->deactivateThread(tid);
break;
case SuspendThread:
cpu->suspendThread(tid);
cpu->resPool->suspendThread(tid);
break;
case SquashFromMemStall:
cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid);
cpu->resPool->squashDueToMemStall(inst, inst->squashingStage,
inst->seqNum, tid);
break;
case Trap:
DPRINTF(InOrderCPU, "Trapping CPU\n");
cpu->trap(fault, tid, inst);
cpu->resPool->trap(fault, tid, inst);
cpu->trapPending[tid] = false;
break;
#if !FULL_SYSTEM
case Syscall:
cpu->syscall(inst->syscallNum, tid);
cpu->resPool->trap(fault, tid, inst);
break;
#endif
default:
fatal("Unrecognized Event Type %s", eventNames[cpuEventType]);
}
cpu->cpuEventRemoveList.push(this);
}
const char *
InOrderCPU::CPUEvent::description()
{
return "InOrderCPU event";
}
void
InOrderCPU::CPUEvent::scheduleEvent(int delay)
{
assert(!scheduled() || squashed());
cpu->reschedule(this, cpu->nextCycle(curTick() + cpu->ticks(delay)), true);
}
void
InOrderCPU::CPUEvent::unscheduleEvent()
{
if (scheduled())
squash();
}
InOrderCPU::InOrderCPU(Params *params)
: BaseCPU(params),
cpu_id(params->cpu_id),
coreType("default"),
_status(Idle),
tickEvent(this),
stageWidth(params->stageWidth),
timeBuffer(2 , 2),
removeInstsThisCycle(false),
activityRec(params->name, NumStages, 10, params->activity),
#if FULL_SYSTEM
system(params->system),
#endif // FULL_SYSTEM
#ifdef DEBUG
cpuEventNum(0),
resReqCount(0),
#endif // DEBUG
drainCount(0),
deferRegistration(false/*params->deferRegistration*/),
stageTracing(params->stageTracing),
lastRunningCycle(0),
instsPerSwitch(0)
{
cpu_params = params;
resPool = new ResourcePool(this, params);
// Resize for Multithreading CPUs
thread.resize(numThreads);
#if !FULL_SYSTEM
ThreadID active_threads = params->workload.size();
if (active_threads > MaxThreads) {
panic("Workload Size too large. Increase the 'MaxThreads'"
"in your InOrder implementation or "
"edit your workload size.");
}
if (active_threads > 1) {
threadModel = (InOrderCPU::ThreadModel) params->threadModel;
if (threadModel == SMT) {
DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n");
} else if (threadModel == SwitchOnCacheMiss) {
DPRINTF(InOrderCPU, "Setting Thread Model to "
"Switch On Cache Miss\n");
}
} else {
threadModel = Single;
}
#endif
// Bind the fetch & data ports from the resource pool.
fetchPortIdx = resPool->getPortIdx(params->fetchMemPort);
if (fetchPortIdx == 0) {
fatal("Unable to find port to fetch instructions from.\n");
}
dataPortIdx = resPool->getPortIdx(params->dataMemPort);
if (dataPortIdx == 0) {
fatal("Unable to find port for data.\n");
}
for (ThreadID tid = 0; tid < numThreads; ++tid) {
pc[tid].set(0);
lastCommittedPC[tid].set(0);
#if FULL_SYSTEM
// SMT is not supported in FS mode yet.
assert(numThreads == 1);
thread[tid] = new Thread(this, 0);
#else
if (tid < (ThreadID)params->workload.size()) {
DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n",
tid, params->workload[tid]->prog_fname);
thread[tid] =
new Thread(this, tid, params->workload[tid]);
} else {
//Allocate Empty thread so M5 can use later
//when scheduling threads to CPU
Process* dummy_proc = params->workload[0];
thread[tid] = new Thread(this, tid, dummy_proc);
}
// Eventually set this with parameters...
asid[tid] = tid;
#endif
// Setup the TC that will serve as the interface to the threads/CPU.
InOrderThreadContext *tc = new InOrderThreadContext;
tc->cpu = this;
tc->thread = thread[tid];
#if FULL_SYSTEM
// Setup quiesce event.
this->thread[tid]->quiesceEvent = new EndQuiesceEvent(tc);
#endif
// Give the thread the TC.
thread[tid]->tc = tc;
thread[tid]->setFuncExeInst(0);
globalSeqNum[tid] = 1;
// Add the TC to the CPU's list of TC's.
this->threadContexts.push_back(tc);
}
// Initialize TimeBuffer Stage Queues
for (int stNum=0; stNum < NumStages - 1; stNum++) {
stageQueue[stNum] = new StageQueue(NumStages, NumStages);
stageQueue[stNum]->id(stNum);
}
// Set Up Pipeline Stages
for (int stNum=0; stNum < NumStages; stNum++) {
if (stNum == 0)
pipelineStage[stNum] = new FirstStage(params, stNum);
else
pipelineStage[stNum] = new PipelineStage(params, stNum);
pipelineStage[stNum]->setCPU(this);
pipelineStage[stNum]->setActiveThreads(&activeThreads);
pipelineStage[stNum]->setTimeBuffer(&timeBuffer);
// Take Care of 1st/Nth stages
if (stNum > 0)
pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]);
if (stNum < NumStages - 1)
pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]);
}
// Initialize thread specific variables
for (ThreadID tid = 0; tid < numThreads; tid++) {
archRegDepMap[tid].setCPU(this);
nonSpecInstActive[tid] = false;
nonSpecSeqNum[tid] = 0;
squashSeqNum[tid] = MaxAddr;
lastSquashCycle[tid] = 0;
memset(intRegs[tid], 0, sizeof(intRegs[tid]));
memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid]));
isa[tid].clear();
// Define dummy instructions and resource requests to be used.
dummyInst[tid] = new InOrderDynInst(this,
thread[tid],
0,
tid,
asid[tid]);
dummyReq[tid] = new ResourceRequest(resPool->getResource(0));
#if FULL_SYSTEM
// Use this dummy inst to force squashing behind every instruction
// in pipeline
dummyTrapInst[tid] = new InOrderDynInst(this, NULL, 0, 0, 0);
dummyTrapInst[tid]->seqNum = 0;
dummyTrapInst[tid]->squashSeqNum = 0;
dummyTrapInst[tid]->setTid(tid);
#endif
trapPending[tid] = false;
}
dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0);
dummyReqInst->setSquashed();
dummyReqInst->resetInstCount();
dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0);
dummyBufferInst->setSquashed();
dummyBufferInst->resetInstCount();
endOfSkedIt = skedCache.end();
frontEndSked = createFrontEndSked();
faultSked = createFaultSked();
lastRunningCycle = curTick();
lockAddr = 0;
lockFlag = false;
// Schedule First Tick Event, CPU will reschedule itself from here on out.
scheduleTickEvent(0);
}
InOrderCPU::~InOrderCPU()
{
delete resPool;
SkedCacheIt sked_it = skedCache.begin();
SkedCacheIt sked_end = skedCache.end();
while (sked_it != sked_end) {
delete (*sked_it).second;
sked_it++;
}
skedCache.clear();
}
m5::hash_map<InOrderCPU::SkedID, ThePipeline::RSkedPtr> InOrderCPU::skedCache;
RSkedPtr
InOrderCPU::createFrontEndSked()
{
RSkedPtr res_sked = new ResourceSked();
int stage_num = 0;
StageScheduler F(res_sked, stage_num++);
StageScheduler D(res_sked, stage_num++);
// FETCH
F.needs(FetchSeq, FetchSeqUnit::AssignNextPC);
F.needs(ICache, FetchUnit::InitiateFetch);
// DECODE
D.needs(ICache, FetchUnit::CompleteFetch);
D.needs(Decode, DecodeUnit::DecodeInst);
D.needs(BPred, BranchPredictor::PredictBranch);
D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC);
DPRINTF(SkedCache, "Resource Sked created for instruction Front End\n");
return res_sked;
}
RSkedPtr
InOrderCPU::createFaultSked()
{
RSkedPtr res_sked = new ResourceSked();
StageScheduler W(res_sked, NumStages - 1);
W.needs(Grad, GraduationUnit::CheckFault);
DPRINTF(SkedCache, "Resource Sked created for instruction Faults\n");
return res_sked;
}
RSkedPtr
InOrderCPU::createBackEndSked(DynInstPtr inst)
{
RSkedPtr res_sked = lookupSked(inst);
if (res_sked != NULL) {
DPRINTF(SkedCache, "Found %s in sked cache.\n",
inst->instName());
return res_sked;
} else {
res_sked = new ResourceSked();
}
int stage_num = ThePipeline::BackEndStartStage;
StageScheduler X(res_sked, stage_num++);
StageScheduler M(res_sked, stage_num++);
StageScheduler W(res_sked, stage_num++);
if (!inst->staticInst) {
warn_once("Static Instruction Object Not Set. Can't Create"
" Back End Schedule");
return NULL;
}
// EXECUTE
X.needs(RegManager, UseDefUnit::MarkDestRegs);
for (int idx=0; idx < inst->numSrcRegs(); idx++) {
if (!idx || !inst->isStore()) {
X.needs(RegManager, UseDefUnit::ReadSrcReg, idx);
}
}
//@todo: schedule non-spec insts to operate on this cycle
// as long as all previous insts are done
if ( inst->isNonSpeculative() ) {
// skip execution of non speculative insts until later
} else if ( inst->isMemRef() ) {
if ( inst->isLoad() ) {
X.needs(AGEN, AGENUnit::GenerateAddr);
}
} else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
X.needs(MDU, MultDivUnit::StartMultDiv);
} else {
X.needs(ExecUnit, ExecutionUnit::ExecuteInst);
}
// MEMORY
if (!inst->isNonSpeculative()) {
if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
M.needs(MDU, MultDivUnit::EndMultDiv);
}
if ( inst->isLoad() ) {
M.needs(DCache, CacheUnit::InitiateReadData);
if (inst->splitInst)
M.needs(DCache, CacheUnit::InitSecondSplitRead);
} else if ( inst->isStore() ) {
for (int i = 1; i < inst->numSrcRegs(); i++ ) {
M.needs(RegManager, UseDefUnit::ReadSrcReg, i);
}
M.needs(AGEN, AGENUnit::GenerateAddr);
M.needs(DCache, CacheUnit::InitiateWriteData);
if (inst->splitInst)
M.needs(DCache, CacheUnit::InitSecondSplitWrite);
}
}
// WRITEBACK
if (!inst->isNonSpeculative()) {
if ( inst->isLoad() ) {
W.needs(DCache, CacheUnit::CompleteReadData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
} else if ( inst->isStore() ) {
W.needs(DCache, CacheUnit::CompleteWriteData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
}
} else {
// Finally, Execute Speculative Data
if (inst->isMemRef()) {
if (inst->isLoad()) {
W.needs(AGEN, AGENUnit::GenerateAddr);
W.needs(DCache, CacheUnit::InitiateReadData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::InitSecondSplitRead);
W.needs(DCache, CacheUnit::CompleteReadData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
} else if (inst->isStore()) {
if ( inst->numSrcRegs() >= 2 ) {
W.needs(RegManager, UseDefUnit::ReadSrcReg, 1);
}
W.needs(AGEN, AGENUnit::GenerateAddr);
W.needs(DCache, CacheUnit::InitiateWriteData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::InitSecondSplitWrite);
W.needs(DCache, CacheUnit::CompleteWriteData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
}
} else {
W.needs(ExecUnit, ExecutionUnit::ExecuteInst);
}
}
W.needs(Grad, GraduationUnit::CheckFault);
for (int idx=0; idx < inst->numDestRegs(); idx++) {
W.needs(RegManager, UseDefUnit::WriteDestReg, idx);
}
if (inst->isControl())
W.needs(BPred, BranchPredictor::UpdatePredictor);
W.needs(Grad, GraduationUnit::GraduateInst);
// Insert Back Schedule into our cache of
// resource schedules
addToSkedCache(inst, res_sked);
DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n",
inst->instName(), inst->getMachInst());
res_sked->print();
return res_sked;
}
void
InOrderCPU::regStats()
{
/* Register the Resource Pool's stats here.*/
resPool->regStats();
/* Register for each Pipeline Stage */
for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) {
pipelineStage[stage_num]->regStats();
}
/* Register any of the InOrderCPU's stats here.*/
instsPerCtxtSwitch
.name(name() + ".instsPerContextSwitch")
.desc("Instructions Committed Per Context Switch")
.prereq(instsPerCtxtSwitch);
numCtxtSwitches
.name(name() + ".contextSwitches")
.desc("Number of context switches");
comLoads
.name(name() + ".comLoads")
.desc("Number of Load instructions committed");
comStores
.name(name() + ".comStores")
.desc("Number of Store instructions committed");
comBranches
.name(name() + ".comBranches")
.desc("Number of Branches instructions committed");
comNops
.name(name() + ".comNops")
.desc("Number of Nop instructions committed");
comNonSpec
.name(name() + ".comNonSpec")
.desc("Number of Non-Speculative instructions committed");
comInts
.name(name() + ".comInts")
.desc("Number of Integer instructions committed");
comFloats
.name(name() + ".comFloats")
.desc("Number of Floating Point instructions committed");
timesIdled
.name(name() + ".timesIdled")
.desc("Number of times that the entire CPU went into an idle state and"
" unscheduled itself")
.prereq(timesIdled);
idleCycles
.name(name() + ".idleCycles")
.desc("Number of cycles cpu's stages were not processed");
runCycles
.name(name() + ".runCycles")
.desc("Number of cycles cpu stages are processed.");
activity
.name(name() + ".activity")
.desc("Percentage of cycles cpu is active")
.precision(6);
activity = (runCycles / numCycles) * 100;
threadCycles
.init(numThreads)
.name(name() + ".threadCycles")
.desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)");
smtCycles
.name(name() + ".smtCycles")
.desc("Total number of cycles that the CPU was in SMT-mode");
committedInsts
.init(numThreads)
.name(name() + ".committedInsts")
.desc("Number of Instructions Simulated (Per-Thread)");
smtCommittedInsts
.init(numThreads)
.name(name() + ".smtCommittedInsts")
.desc("Number of SMT Instructions Simulated (Per-Thread)");
totalCommittedInsts
.name(name() + ".committedInsts_total")
.desc("Number of Instructions Simulated (Total)");
cpi
.name(name() + ".cpi")
.desc("CPI: Cycles Per Instruction (Per-Thread)")
.precision(6);
cpi = numCycles / committedInsts;
smtCpi
.name(name() + ".smt_cpi")
.desc("CPI: Total SMT-CPI")
.precision(6);
smtCpi = smtCycles / smtCommittedInsts;
totalCpi
.name(name() + ".cpi_total")
.desc("CPI: Total CPI of All Threads")
.precision(6);
totalCpi = numCycles / totalCommittedInsts;
ipc
.name(name() + ".ipc")
.desc("IPC: Instructions Per Cycle (Per-Thread)")
.precision(6);
ipc = committedInsts / numCycles;
smtIpc
.name(name() + ".smt_ipc")
.desc("IPC: Total SMT-IPC")
.precision(6);
smtIpc = smtCommittedInsts / smtCycles;
totalIpc
.name(name() + ".ipc_total")
.desc("IPC: Total IPC of All Threads")
.precision(6);
totalIpc = totalCommittedInsts / numCycles;
BaseCPU::regStats();
}
void
InOrderCPU::tick()
{
DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n");
++numCycles;
#if FULL_SYSTEM
checkForInterrupts();
#endif
bool pipes_idle = true;
//Tick each of the stages
for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
pipelineStage[stNum]->tick();
pipes_idle = pipes_idle && pipelineStage[stNum]->idle;
}
if (pipes_idle)
idleCycles++;
else
runCycles++;
// Now advance the time buffers one tick
timeBuffer.advance();
for (int sqNum=0; sqNum < NumStages - 1; sqNum++) {
stageQueue[sqNum]->advance();
}
activityRec.advance();
// Any squashed events, or insts then remove them now
cleanUpRemovedEvents();
cleanUpRemovedInsts();
// Re-schedule CPU for this cycle
if (!tickEvent.scheduled()) {
if (_status == SwitchedOut) {
// increment stat
lastRunningCycle = curTick();
} else if (!activityRec.active()) {
DPRINTF(InOrderCPU, "sleeping CPU.\n");
lastRunningCycle = curTick();
timesIdled++;
} else {
//Tick next_tick = curTick() + cycles(1);
//tickEvent.schedule(next_tick);
schedule(&tickEvent, nextCycle(curTick() + 1));
DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n",
nextCycle(curTick() + 1));
}
}
tickThreadStats();
updateThreadPriority();
}
void
InOrderCPU::init()
{
if (!deferRegistration) {
registerThreadContexts();
}
// Set inSyscall so that the CPU doesn't squash when initially
// setting up registers.
for (ThreadID tid = 0; tid < numThreads; ++tid)
thread[tid]->inSyscall = true;
#if FULL_SYSTEM
for (ThreadID tid = 0; tid < numThreads; tid++) {
ThreadContext *src_tc = threadContexts[tid];
TheISA::initCPU(src_tc, src_tc->contextId());
// Initialise the ThreadContext's memory proxies
thread[tid]->initMemProxies(thread[tid]->getTC());
}
#endif
// Clear inSyscall.
for (ThreadID tid = 0; tid < numThreads; ++tid)
thread[tid]->inSyscall = false;
// Call Initializiation Routine for Resource Pool
resPool->init();
}
Port*
InOrderCPU::getPort(const std::string &if_name, int idx)
{
return resPool->getPort(if_name, idx);
}
#if FULL_SYSTEM
Fault
InOrderCPU::hwrei(ThreadID tid)
{
#if THE_ISA == ALPHA_ISA
// Need to clear the lock flag upon returning from an interrupt.
setMiscRegNoEffect(AlphaISA::MISCREG_LOCKFLAG, false, tid);
thread[tid]->kernelStats->hwrei();
// FIXME: XXX check for interrupts? XXX
#endif
return NoFault;
}
bool
InOrderCPU::simPalCheck(int palFunc, ThreadID tid)
{
#if THE_ISA == ALPHA_ISA
if (this->thread[tid]->kernelStats)
this->thread[tid]->kernelStats->callpal(palFunc,
this->threadContexts[tid]);
switch (palFunc) {
case PAL::halt:
halt();
if (--System::numSystemsRunning == 0)
exitSimLoop("all cpus halted");
break;
case PAL::bpt:
case PAL::bugchk:
if (this->system->breakpoint())
return false;
break;
}
#endif
return true;
}
void
InOrderCPU::checkForInterrupts()
{
for (int i = 0; i < threadContexts.size(); i++) {
ThreadContext *tc = threadContexts[i];
if (interrupts->checkInterrupts(tc)) {
Fault interrupt = interrupts->getInterrupt(tc);
if (interrupt != NoFault) {
DPRINTF(Interrupt, "Processing Intterupt for [tid:%i].\n",
tc->threadId());
ThreadID tid = tc->threadId();
interrupts->updateIntrInfo(tc);
// Squash from Last Stage in Pipeline
unsigned last_stage = NumStages - 1;
dummyTrapInst[tid]->squashingStage = last_stage;
pipelineStage[last_stage]->setupSquash(dummyTrapInst[tid],
tid);
// By default, setupSquash will always squash from stage + 1
pipelineStage[BackEndStartStage - 1]->setupSquash(dummyTrapInst[tid],
tid);
// Schedule Squash Through-out Resource Pool
resPool->scheduleEvent(
(InOrderCPU::CPUEventType)ResourcePool::SquashAll,
dummyTrapInst[tid], 0);
// Finally, Setup Trap to happen at end of cycle
trapContext(interrupt, tid, dummyTrapInst[tid]);
}
}
}
}
Fault
InOrderCPU::getInterrupts()
{
// Check if there are any outstanding interrupts
return interrupts->getInterrupt(threadContexts[0]);
}
void
InOrderCPU::processInterrupts(Fault interrupt)
{
// Check for interrupts here. For now can copy the code that
// exists within isa_fullsys_traits.hh. Also assume that thread 0
// is the one that handles the interrupts.
// @todo: Possibly consolidate the interrupt checking code.
// @todo: Allow other threads to handle interrupts.
assert(interrupt != NoFault);
interrupts->updateIntrInfo(threadContexts[0]);
DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name());
// Note: Context ID ok here? Impl. of FS mode needs to revisit this
trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst);
}
#endif
void
InOrderCPU::trapContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
{
scheduleCpuEvent(Trap, fault, tid, inst, delay);
trapPending[tid] = true;
}
void
InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst)
{
fault->invoke(tcBase(tid), inst->staticInst);
removePipelineStalls(tid);
}
void
InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid, int delay)
{
scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay);
}
void
InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num,
ThreadID tid)
{
DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n");
// Squash all instructions in each stage including
// instruction that caused the squash (seq_num - 1)
// NOTE: The stage bandwidth needs to be cleared so thats why
// the stalling instruction is squashed as well. The stalled
// instruction is previously placed in another intermediate buffer
// while it's stall is being handled.
InstSeqNum squash_seq_num = seq_num - 1;
for (int stNum=stage_num; stNum >= 0 ; stNum--) {
pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid);
}
}
void
InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault,
ThreadID tid, DynInstPtr inst,
unsigned delay, CPUEventPri event_pri)
{
CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst,
event_pri);
Tick sked_tick = nextCycle(curTick() + ticks(delay));
if (delay >= 0) {
DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n",
eventNames[c_event], curTick() + delay, tid);
schedule(cpu_event, sked_tick);
} else {
cpu_event->process();
cpuEventRemoveList.push(cpu_event);
}
// Broadcast event to the Resource Pool
// Need to reset tid just in case this is a dummy instruction
inst->setTid(tid);
resPool->scheduleEvent(c_event, inst, 0, 0, tid);
}
bool
InOrderCPU::isThreadActive(ThreadID tid)
{
list<ThreadID>::iterator isActive =
std::find(activeThreads.begin(), activeThreads.end(), tid);
return (isActive != activeThreads.end());
}
bool
InOrderCPU::isThreadReady(ThreadID tid)
{
list<ThreadID>::iterator isReady =
std::find(readyThreads.begin(), readyThreads.end(), tid);
return (isReady != readyThreads.end());
}
bool
InOrderCPU::isThreadSuspended(ThreadID tid)
{
list<ThreadID>::iterator isSuspended =
std::find(suspendedThreads.begin(), suspendedThreads.end(), tid);
return (isSuspended != suspendedThreads.end());
}
void
InOrderCPU::activateNextReadyThread()
{
if (readyThreads.size() >= 1) {
ThreadID ready_tid = readyThreads.front();
// Activate in Pipeline
activateThread(ready_tid);
// Activate in Resource Pool
resPool->activateThread(ready_tid);
list<ThreadID>::iterator ready_it =
std::find(readyThreads.begin(), readyThreads.end(), ready_tid);
readyThreads.erase(ready_it);
} else {
DPRINTF(InOrderCPU,
"Attempting to activate new thread, but No Ready Threads to"
"activate.\n");
DPRINTF(InOrderCPU,
"Unable to switch to next active thread.\n");
}
}
void
InOrderCPU::activateThread(ThreadID tid)
{
if (isThreadSuspended(tid)) {
DPRINTF(InOrderCPU,
"Removing [tid:%i] from suspended threads list.\n", tid);
list<ThreadID>::iterator susp_it =
std::find(suspendedThreads.begin(), suspendedThreads.end(),
tid);
suspendedThreads.erase(susp_it);
}
if (threadModel == SwitchOnCacheMiss &&
numActiveThreads() == 1) {
DPRINTF(InOrderCPU,
"Ignoring activation of [tid:%i], since [tid:%i] is "
"already running.\n", tid, activeThreadId());
DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n",
tid);
readyThreads.push_back(tid);
} else if (!isThreadActive(tid)) {
DPRINTF(InOrderCPU,
"Adding [tid:%i] to active threads list.\n", tid);
activeThreads.push_back(tid);
activateThreadInPipeline(tid);
thread[tid]->lastActivate = curTick();
tcBase(tid)->setStatus(ThreadContext::Active);
wakeCPU();
numCtxtSwitches++;
}
}
void
InOrderCPU::activateThreadInPipeline(ThreadID tid)
{
for (int stNum=0; stNum < NumStages; stNum++) {
pipelineStage[stNum]->activateThread(tid);
}
}
void
InOrderCPU::deactivateContext(ThreadID tid, int delay)
{
DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid);
scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
_status = Running;
}
void
InOrderCPU::deactivateThread(ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid);
if (isThreadActive(tid)) {
DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n",
tid);
list<ThreadID>::iterator thread_it =
std::find(activeThreads.begin(), activeThreads.end(), tid);
removePipelineStalls(*thread_it);
activeThreads.erase(thread_it);
// Ideally, this should be triggered from the
// suspendContext/Thread functions
tcBase(tid)->setStatus(ThreadContext::Suspended);
}
assert(!isThreadActive(tid));
}
void
InOrderCPU::removePipelineStalls(ThreadID tid)
{
DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n",
tid);
for (int stNum = 0; stNum < NumStages ; stNum++) {
pipelineStage[stNum]->removeStalls(tid);
}
}
void
InOrderCPU::updateThreadPriority()
{
if (activeThreads.size() > 1)
{
//DEFAULT TO ROUND ROBIN SCHEME
//e.g. Move highest priority to end of thread list
list<ThreadID>::iterator list_begin = activeThreads.begin();
unsigned high_thread = *list_begin;
activeThreads.erase(list_begin);
activeThreads.push_back(high_thread);
}
}
inline void
InOrderCPU::tickThreadStats()
{
/** Keep track of cycles that each thread is active */
list<ThreadID>::iterator thread_it = activeThreads.begin();
while (thread_it != activeThreads.end()) {
threadCycles[*thread_it]++;
thread_it++;
}
// Keep track of cycles where SMT is active
if (activeThreads.size() > 1) {
smtCycles++;
}
}
void
InOrderCPU::activateContext(ThreadID tid, int delay)
{
DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid);
scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
_status = Running;
}
void
InOrderCPU::activateNextReadyContext(int delay)
{
DPRINTF(InOrderCPU,"Activating next ready thread\n");
scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0],
delay, ActivateNextReadyThread_Pri);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
_status = Running;
}
void
InOrderCPU::haltContext(ThreadID tid, int delay)
{
DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid);
scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid], delay);
activityRec.activity();
}
void
InOrderCPU::haltThread(ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid);
deactivateThread(tid);
squashThreadInPipeline(tid);
haltedThreads.push_back(tid);
tcBase(tid)->setStatus(ThreadContext::Halted);
if (threadModel == SwitchOnCacheMiss) {
activateNextReadyContext();
}
}
void
InOrderCPU::suspendContext(ThreadID tid, int delay)
{
scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid], delay);
}
void
InOrderCPU::suspendThread(ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n",
tid);
deactivateThread(tid);
suspendedThreads.push_back(tid);
thread[tid]->lastSuspend = curTick();
tcBase(tid)->setStatus(ThreadContext::Suspended);
}
void
InOrderCPU::squashThreadInPipeline(ThreadID tid)
{
//Squash all instructions in each stage
for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
pipelineStage[stNum]->squash(0 /*seq_num*/, tid);
}
}
PipelineStage*
InOrderCPU::getPipeStage(int stage_num)
{
return pipelineStage[stage_num];
}
RegIndex
InOrderCPU::flattenRegIdx(RegIndex reg_idx, RegType &reg_type, ThreadID tid)
{
if (reg_idx < FP_Base_DepTag) {
reg_type = IntType;
return isa[tid].flattenIntIndex(reg_idx);
} else if (reg_idx < Ctrl_Base_DepTag) {
reg_type = FloatType;
reg_idx -= FP_Base_DepTag;
return isa[tid].flattenFloatIndex(reg_idx);
} else {
reg_type = MiscType;
return reg_idx - TheISA::Ctrl_Base_DepTag;
}
}
uint64_t
InOrderCPU::readIntReg(RegIndex reg_idx, ThreadID tid)
{
DPRINTF(IntRegs, "[tid:%i]: Reading Int. Reg %i as %x\n",
tid, reg_idx, intRegs[tid][reg_idx]);
return intRegs[tid][reg_idx];
}
FloatReg
InOrderCPU::readFloatReg(RegIndex reg_idx, ThreadID tid)
{
DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
return floatRegs.f[tid][reg_idx];
}
FloatRegBits
InOrderCPU::readFloatRegBits(RegIndex reg_idx, ThreadID tid)
{
DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
return floatRegs.i[tid][reg_idx];
}
void
InOrderCPU::setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid)
{
if (reg_idx == TheISA::ZeroReg) {
DPRINTF(IntRegs, "[tid:%i]: Ignoring Setting of ISA-ZeroReg "
"(Int. Reg %i) to %x\n", tid, reg_idx, val);
return;
} else {
DPRINTF(IntRegs, "[tid:%i]: Setting Int. Reg %i to %x\n",
tid, reg_idx, val);
intRegs[tid][reg_idx] = val;
}
}
void
InOrderCPU::setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid)
{
floatRegs.f[tid][reg_idx] = val;
DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
"%x, %08f\n",
tid, reg_idx,
floatRegs.i[tid][reg_idx],
floatRegs.f[tid][reg_idx]);
}
void
InOrderCPU::setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid)
{
floatRegs.i[tid][reg_idx] = val;
DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
"%x, %08f\n",
tid, reg_idx,
floatRegs.i[tid][reg_idx],
floatRegs.f[tid][reg_idx]);
}
uint64_t
InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid)
{
// If Default value is set, then retrieve target thread
if (tid == InvalidThreadID) {
tid = TheISA::getTargetThread(tcBase(tid));
}
if (reg_idx < FP_Base_DepTag) {
// Integer Register File
return readIntReg(reg_idx, tid);
} else if (reg_idx < Ctrl_Base_DepTag) {
// Float Register File
reg_idx -= FP_Base_DepTag;
return readFloatRegBits(reg_idx, tid);
} else {
reg_idx -= Ctrl_Base_DepTag;
return readMiscReg(reg_idx, tid); // Misc. Register File
}
}
void
InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val,
ThreadID tid)
{
// If Default value is set, then retrieve target thread
if (tid == InvalidThreadID) {
tid = TheISA::getTargetThread(tcBase(tid));
}
if (reg_idx < FP_Base_DepTag) { // Integer Register File
setIntReg(reg_idx, val, tid);
} else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File
reg_idx -= FP_Base_DepTag;
setFloatRegBits(reg_idx, val, tid);
} else {
reg_idx -= Ctrl_Base_DepTag;
setMiscReg(reg_idx, val, tid); // Misc. Register File
}
}
MiscReg
InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid)
{
return isa[tid].readMiscRegNoEffect(misc_reg);
}
MiscReg
InOrderCPU::readMiscReg(int misc_reg, ThreadID tid)
{
return isa[tid].readMiscReg(misc_reg, tcBase(tid));
}
void
InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid)
{
isa[tid].setMiscRegNoEffect(misc_reg, val);
}
void
InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid)
{
isa[tid].setMiscReg(misc_reg, val, tcBase(tid));
}
InOrderCPU::ListIt
InOrderCPU::addInst(DynInstPtr inst)
{
ThreadID tid = inst->readTid();
instList[tid].push_back(inst);
return --(instList[tid].end());
}
InOrderCPU::ListIt
InOrderCPU::findInst(InstSeqNum seq_num, ThreadID tid)
{
ListIt it = instList[tid].begin();
ListIt end = instList[tid].end();
while (it != end) {
if ((*it)->seqNum == seq_num)
return it;
else if ((*it)->seqNum > seq_num)
break;
it++;
}
return instList[tid].end();
}
void
InOrderCPU::updateContextSwitchStats()
{
// Set Average Stat Here, then reset to 0
instsPerCtxtSwitch = instsPerSwitch;
instsPerSwitch = 0;
}
void
InOrderCPU::instDone(DynInstPtr inst, ThreadID tid)
{
// Set the nextPC to be fetched if this is the last instruction
// committed
// ========
// This contributes to the precise state of the CPU
// which can be used when restoring a thread to the CPU after after any
// type of context switching activity (fork, exception, etc.)
TheISA::PCState comm_pc = inst->pcState();
lastCommittedPC[tid] = comm_pc;
TheISA::advancePC(comm_pc, inst->staticInst);
pcState(comm_pc, tid);
//@todo: may be unnecessary with new-ISA-specific branch handling code
if (inst->isControl()) {
thread[tid]->lastGradIsBranch = true;
thread[tid]->lastBranchPC = inst->pcState();
TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst);
} else {
thread[tid]->lastGradIsBranch = false;
}
// Finalize Trace Data For Instruction
if (inst->traceData) {
//inst->traceData->setCycle(curTick());
inst->traceData->setFetchSeq(inst->seqNum);
//inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst);
inst->traceData->dump();
delete inst->traceData;
inst->traceData = NULL;
}
// Increment active thread's instruction count
instsPerSwitch++;
// Increment thread-state's instruction count
thread[tid]->numInst++;
// Increment thread-state's instruction stats
thread[tid]->numInsts++;
// Count committed insts per thread stats
committedInsts[tid]++;
// Count total insts committed stat
totalCommittedInsts++;
// Count SMT-committed insts per thread stat
if (numActiveThreads() > 1) {
smtCommittedInsts[tid]++;
}
// Instruction-Mix Stats
if (inst->isLoad()) {
comLoads++;
} else if (inst->isStore()) {
comStores++;
} else if (inst->isControl()) {
comBranches++;
} else if (inst->isNop()) {
comNops++;
} else if (inst->isNonSpeculative()) {
comNonSpec++;
} else if (inst->isInteger()) {
comInts++;
} else if (inst->isFloating()) {
comFloats++;
}
// Check for instruction-count-based events.
comInstEventQueue[tid]->serviceEvents(thread[tid]->numInst);
// Finally, remove instruction from CPU
removeInst(inst);
}
// currently unused function, but substitute repetitive code w/this function
// call
void
InOrderCPU::addToRemoveList(DynInstPtr inst)
{
removeInstsThisCycle = true;
if (!inst->isRemoveList()) {
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
"[sn:%lli] to remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
inst->setRemoveList();
removeList.push(inst->getInstListIt());
} else {
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
"[sn:%lli], already remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
}
}
void
InOrderCPU::removeInst(DynInstPtr inst)
{
DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s "
"[sn:%lli]\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
removeInstsThisCycle = true;
// Remove the instruction.
if (!inst->isRemoveList()) {
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
"[sn:%lli] to remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
inst->setRemoveList();
removeList.push(inst->getInstListIt());
} else {
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
"[sn:%lli], already on remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
}
}
void
InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid)
{
//assert(!instList[tid].empty());
removeInstsThisCycle = true;
ListIt inst_iter = instList[tid].end();
inst_iter--;
DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction "
"list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
tid, seq_num, (*inst_iter)->seqNum);
while ((*inst_iter)->seqNum > seq_num) {
bool break_loop = (inst_iter == instList[tid].begin());
squashInstIt(inst_iter, tid);
inst_iter--;
if (break_loop)
break;
}
}
inline void
InOrderCPU::squashInstIt(const ListIt inst_it, ThreadID tid)
{
DynInstPtr inst = (*inst_it);
if (inst->threadNumber == tid) {
DPRINTF(InOrderCPU, "Squashing instruction, "
"[tid:%i] [sn:%lli] PC %s\n",
inst->threadNumber,
inst->seqNum,
inst->pcState());
inst->setSquashed();
archRegDepMap[tid].remove(inst);
if (!inst->isRemoveList()) {
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
"[sn:%lli] to remove list\n",
inst->threadNumber, inst->pcState(),
inst->seqNum);
inst->setRemoveList();
removeList.push(inst_it);
} else {
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]"
" PC %s [sn:%lli], already on remove list\n",
inst->threadNumber, inst->pcState(),
inst->seqNum);
}
}
}
void
InOrderCPU::cleanUpRemovedInsts()
{
while (!removeList.empty()) {
DPRINTF(InOrderCPU, "Removing instruction, "
"[tid:%i] [sn:%lli] PC %s\n",
(*removeList.front())->threadNumber,
(*removeList.front())->seqNum,
(*removeList.front())->pcState());
DynInstPtr inst = *removeList.front();
ThreadID tid = inst->threadNumber;
// Remove From Register Dependency Map, If Necessary
// archRegDepMap[tid].remove(inst);
// Clear if Non-Speculative
if (inst->staticInst &&
inst->seqNum == nonSpecSeqNum[tid] &&
nonSpecInstActive[tid] == true) {
nonSpecInstActive[tid] = false;
}
inst->onInstList = false;
instList[tid].erase(removeList.front());
removeList.pop();
}
removeInstsThisCycle = false;
}
void
InOrderCPU::cleanUpRemovedEvents()
{
while (!cpuEventRemoveList.empty()) {
Event *cpu_event = cpuEventRemoveList.front();
cpuEventRemoveList.pop();
delete cpu_event;
}
}
void
InOrderCPU::dumpInsts()
{
int num = 0;
ListIt inst_list_it = instList[0].begin();
cprintf("Dumping Instruction List\n");
while (inst_list_it != instList[0].end()) {
cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
"Squashed:%i\n\n",
num, (*inst_list_it)->pcState(),
(*inst_list_it)->threadNumber,
(*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
(*inst_list_it)->isSquashed());
inst_list_it++;
++num;
}
}
void
InOrderCPU::wakeCPU()
{
if (/*activityRec.active() || */tickEvent.scheduled()) {
DPRINTF(Activity, "CPU already running.\n");
return;
}
DPRINTF(Activity, "Waking up CPU\n");
Tick extra_cycles = tickToCycles((curTick() - 1) - lastRunningCycle);
idleCycles += extra_cycles;
for (int stage_num = 0; stage_num < NumStages; stage_num++) {
pipelineStage[stage_num]->idleCycles += extra_cycles;
}
numCycles += extra_cycles;
schedule(&tickEvent, nextCycle(curTick()));
}
#if FULL_SYSTEM
// Lots of copied full system code...place into BaseCPU class?
void
InOrderCPU::wakeup()
{
if (thread[0]->status() != ThreadContext::Suspended)
return;
wakeCPU();
DPRINTF(Quiesce, "Suspended Processor woken\n");
threadContexts[0]->activate();
}
#endif
#if !FULL_SYSTEM
void
InOrderCPU::syscallContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
{
// Syscall must be non-speculative, so squash from last stage
unsigned squash_stage = NumStages - 1;
inst->setSquashInfo(squash_stage);
// Squash In Pipeline Stage
pipelineStage[squash_stage]->setupSquash(inst, tid);
// Schedule Squash Through-out Resource Pool
resPool->scheduleEvent(
(InOrderCPU::CPUEventType)ResourcePool::SquashAll, inst, 0);
scheduleCpuEvent(Syscall, fault, tid, inst, delay, Syscall_Pri);
}
void
InOrderCPU::syscall(int64_t callnum, ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid);
DPRINTF(Activity,"Activity: syscall() called.\n");
// Temporarily increase this by one to account for the syscall
// instruction.
++(this->thread[tid]->funcExeInst);
// Execute the actual syscall.
this->thread[tid]->syscall(callnum);
// Decrease funcExeInst by one as the normal commit will handle
// incrementing it.
--(this->thread[tid]->funcExeInst);
// Clear Non-Speculative Block Variable
nonSpecInstActive[tid] = false;
}
#endif
TheISA::TLB*
InOrderCPU::getITBPtr()
{
CacheUnit *itb_res =
dynamic_cast<CacheUnit*>(resPool->getResource(fetchPortIdx));
return itb_res->tlb();
}
TheISA::TLB*
InOrderCPU::getDTBPtr()
{
CacheUnit *dtb_res =
dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
return dtb_res->tlb();
}
Decoder *
InOrderCPU::getDecoderPtr()
{
FetchUnit *fetch_res =
dynamic_cast<FetchUnit*>(resPool->getResource(fetchPortIdx));
return &fetch_res->decoder;
}
Fault
InOrderCPU::read(DynInstPtr inst, Addr addr,
uint8_t *data, unsigned size, unsigned flags)
{
//@TODO: Generalize name "CacheUnit" to "MemUnit" just in case
// you want to run w/out caches?
CacheUnit *cache_res =
dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
return cache_res->read(inst, addr, data, size, flags);
}
Fault
InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size,
Addr addr, unsigned flags, uint64_t *write_res)
{
//@TODO: Generalize name "CacheUnit" to "MemUnit" just in case
// you want to run w/out caches?
CacheUnit *cache_res =
dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
return cache_res->write(inst, data, size, addr, flags, write_res);
}