f85286b3de
Port proxies are used to replace non-structural ports, and thus enable all ports in the system to correspond to a structural entity. This has the advantage of accessing memory through the normal memory subsystem and thus allowing any constellation of distributed memories, address maps, etc. Most accesses are done through the "system port" that is used for loading binaries, debugging etc. For the entities that belong to the CPU, e.g. threads and thread contexts, they wrap the CPU data port in a port proxy. The following replacements are made: FunctionalPort > PortProxy TranslatingPort > SETranslatingPortProxy VirtualPort > FSTranslatingPortProxy --HG-- rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
1785 lines
49 KiB
C++
1785 lines
49 KiB
C++
/*
|
|
* Copyright (c) 2007 MIPS Technologies, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Authors: Korey Sewell
|
|
*
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include "arch/utility.hh"
|
|
#include "base/bigint.hh"
|
|
#include "config/full_system.hh"
|
|
#include "config/the_isa.hh"
|
|
#include "cpu/inorder/resources/resource_list.hh"
|
|
#include "cpu/inorder/cpu.hh"
|
|
#include "cpu/inorder/first_stage.hh"
|
|
#include "cpu/inorder/inorder_dyn_inst.hh"
|
|
#include "cpu/inorder/pipeline_traits.hh"
|
|
#include "cpu/inorder/resource_pool.hh"
|
|
#include "cpu/inorder/thread_context.hh"
|
|
#include "cpu/inorder/thread_state.hh"
|
|
#include "cpu/activity.hh"
|
|
#include "cpu/base.hh"
|
|
#include "cpu/exetrace.hh"
|
|
#include "cpu/simple_thread.hh"
|
|
#include "cpu/thread_context.hh"
|
|
#include "debug/Activity.hh"
|
|
#include "debug/InOrderCPU.hh"
|
|
#include "debug/RefCount.hh"
|
|
#include "debug/SkedCache.hh"
|
|
#include "debug/Quiesce.hh"
|
|
#include "params/InOrderCPU.hh"
|
|
#include "sim/process.hh"
|
|
#include "sim/stat_control.hh"
|
|
|
|
#if FULL_SYSTEM
|
|
#include "cpu/quiesce_event.hh"
|
|
#include "sim/system.hh"
|
|
#endif
|
|
|
|
#if THE_ISA == ALPHA_ISA
|
|
#include "arch/alpha/osfpal.hh"
|
|
#endif
|
|
|
|
using namespace std;
|
|
using namespace TheISA;
|
|
using namespace ThePipeline;
|
|
|
|
InOrderCPU::TickEvent::TickEvent(InOrderCPU *c)
|
|
: Event(CPU_Tick_Pri), cpu(c)
|
|
{ }
|
|
|
|
|
|
void
|
|
InOrderCPU::TickEvent::process()
|
|
{
|
|
cpu->tick();
|
|
}
|
|
|
|
|
|
const char *
|
|
InOrderCPU::TickEvent::description()
|
|
{
|
|
return "InOrderCPU tick event";
|
|
}
|
|
|
|
InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type,
|
|
Fault fault, ThreadID _tid, DynInstPtr inst,
|
|
CPUEventPri event_pri)
|
|
: Event(event_pri), cpu(_cpu)
|
|
{
|
|
setEvent(e_type, fault, _tid, inst);
|
|
}
|
|
|
|
|
|
std::string InOrderCPU::eventNames[NumCPUEvents] =
|
|
{
|
|
"ActivateThread",
|
|
"ActivateNextReadyThread",
|
|
"DeactivateThread",
|
|
"HaltThread",
|
|
"SuspendThread",
|
|
"Trap",
|
|
"Syscall",
|
|
"SquashFromMemStall",
|
|
"UpdatePCs"
|
|
};
|
|
|
|
void
|
|
InOrderCPU::CPUEvent::process()
|
|
{
|
|
switch (cpuEventType)
|
|
{
|
|
case ActivateThread:
|
|
cpu->activateThread(tid);
|
|
cpu->resPool->activateThread(tid);
|
|
break;
|
|
|
|
case ActivateNextReadyThread:
|
|
cpu->activateNextReadyThread();
|
|
break;
|
|
|
|
case DeactivateThread:
|
|
cpu->deactivateThread(tid);
|
|
cpu->resPool->deactivateThread(tid);
|
|
break;
|
|
|
|
case HaltThread:
|
|
cpu->haltThread(tid);
|
|
cpu->resPool->deactivateThread(tid);
|
|
break;
|
|
|
|
case SuspendThread:
|
|
cpu->suspendThread(tid);
|
|
cpu->resPool->suspendThread(tid);
|
|
break;
|
|
|
|
case SquashFromMemStall:
|
|
cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid);
|
|
cpu->resPool->squashDueToMemStall(inst, inst->squashingStage,
|
|
inst->seqNum, tid);
|
|
break;
|
|
|
|
case Trap:
|
|
DPRINTF(InOrderCPU, "Trapping CPU\n");
|
|
cpu->trap(fault, tid, inst);
|
|
cpu->resPool->trap(fault, tid, inst);
|
|
cpu->trapPending[tid] = false;
|
|
break;
|
|
|
|
#if !FULL_SYSTEM
|
|
case Syscall:
|
|
cpu->syscall(inst->syscallNum, tid);
|
|
cpu->resPool->trap(fault, tid, inst);
|
|
break;
|
|
#endif
|
|
default:
|
|
fatal("Unrecognized Event Type %s", eventNames[cpuEventType]);
|
|
}
|
|
|
|
cpu->cpuEventRemoveList.push(this);
|
|
}
|
|
|
|
|
|
|
|
const char *
|
|
InOrderCPU::CPUEvent::description()
|
|
{
|
|
return "InOrderCPU event";
|
|
}
|
|
|
|
void
|
|
InOrderCPU::CPUEvent::scheduleEvent(int delay)
|
|
{
|
|
assert(!scheduled() || squashed());
|
|
cpu->reschedule(this, cpu->nextCycle(curTick() + cpu->ticks(delay)), true);
|
|
}
|
|
|
|
void
|
|
InOrderCPU::CPUEvent::unscheduleEvent()
|
|
{
|
|
if (scheduled())
|
|
squash();
|
|
}
|
|
|
|
InOrderCPU::InOrderCPU(Params *params)
|
|
: BaseCPU(params),
|
|
cpu_id(params->cpu_id),
|
|
coreType("default"),
|
|
_status(Idle),
|
|
tickEvent(this),
|
|
stageWidth(params->stageWidth),
|
|
timeBuffer(2 , 2),
|
|
removeInstsThisCycle(false),
|
|
activityRec(params->name, NumStages, 10, params->activity),
|
|
#if FULL_SYSTEM
|
|
system(params->system),
|
|
#endif // FULL_SYSTEM
|
|
#ifdef DEBUG
|
|
cpuEventNum(0),
|
|
resReqCount(0),
|
|
#endif // DEBUG
|
|
drainCount(0),
|
|
deferRegistration(false/*params->deferRegistration*/),
|
|
stageTracing(params->stageTracing),
|
|
lastRunningCycle(0),
|
|
instsPerSwitch(0)
|
|
{
|
|
cpu_params = params;
|
|
|
|
resPool = new ResourcePool(this, params);
|
|
|
|
// Resize for Multithreading CPUs
|
|
thread.resize(numThreads);
|
|
|
|
#if !FULL_SYSTEM
|
|
ThreadID active_threads = params->workload.size();
|
|
|
|
if (active_threads > MaxThreads) {
|
|
panic("Workload Size too large. Increase the 'MaxThreads'"
|
|
"in your InOrder implementation or "
|
|
"edit your workload size.");
|
|
}
|
|
|
|
|
|
if (active_threads > 1) {
|
|
threadModel = (InOrderCPU::ThreadModel) params->threadModel;
|
|
|
|
if (threadModel == SMT) {
|
|
DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n");
|
|
} else if (threadModel == SwitchOnCacheMiss) {
|
|
DPRINTF(InOrderCPU, "Setting Thread Model to "
|
|
"Switch On Cache Miss\n");
|
|
}
|
|
|
|
} else {
|
|
threadModel = Single;
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
// Bind the fetch & data ports from the resource pool.
|
|
fetchPortIdx = resPool->getPortIdx(params->fetchMemPort);
|
|
if (fetchPortIdx == 0) {
|
|
fatal("Unable to find port to fetch instructions from.\n");
|
|
}
|
|
|
|
dataPortIdx = resPool->getPortIdx(params->dataMemPort);
|
|
if (dataPortIdx == 0) {
|
|
fatal("Unable to find port for data.\n");
|
|
}
|
|
|
|
for (ThreadID tid = 0; tid < numThreads; ++tid) {
|
|
pc[tid].set(0);
|
|
lastCommittedPC[tid].set(0);
|
|
|
|
#if FULL_SYSTEM
|
|
// SMT is not supported in FS mode yet.
|
|
assert(numThreads == 1);
|
|
thread[tid] = new Thread(this, 0);
|
|
#else
|
|
if (tid < (ThreadID)params->workload.size()) {
|
|
DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n",
|
|
tid, params->workload[tid]->prog_fname);
|
|
thread[tid] =
|
|
new Thread(this, tid, params->workload[tid]);
|
|
} else {
|
|
//Allocate Empty thread so M5 can use later
|
|
//when scheduling threads to CPU
|
|
Process* dummy_proc = params->workload[0];
|
|
thread[tid] = new Thread(this, tid, dummy_proc);
|
|
}
|
|
|
|
// Eventually set this with parameters...
|
|
asid[tid] = tid;
|
|
#endif
|
|
|
|
// Setup the TC that will serve as the interface to the threads/CPU.
|
|
InOrderThreadContext *tc = new InOrderThreadContext;
|
|
tc->cpu = this;
|
|
tc->thread = thread[tid];
|
|
|
|
#if FULL_SYSTEM
|
|
// Setup quiesce event.
|
|
this->thread[tid]->quiesceEvent = new EndQuiesceEvent(tc);
|
|
#endif
|
|
|
|
// Give the thread the TC.
|
|
thread[tid]->tc = tc;
|
|
thread[tid]->setFuncExeInst(0);
|
|
globalSeqNum[tid] = 1;
|
|
|
|
// Add the TC to the CPU's list of TC's.
|
|
this->threadContexts.push_back(tc);
|
|
}
|
|
|
|
// Initialize TimeBuffer Stage Queues
|
|
for (int stNum=0; stNum < NumStages - 1; stNum++) {
|
|
stageQueue[stNum] = new StageQueue(NumStages, NumStages);
|
|
stageQueue[stNum]->id(stNum);
|
|
}
|
|
|
|
|
|
// Set Up Pipeline Stages
|
|
for (int stNum=0; stNum < NumStages; stNum++) {
|
|
if (stNum == 0)
|
|
pipelineStage[stNum] = new FirstStage(params, stNum);
|
|
else
|
|
pipelineStage[stNum] = new PipelineStage(params, stNum);
|
|
|
|
pipelineStage[stNum]->setCPU(this);
|
|
pipelineStage[stNum]->setActiveThreads(&activeThreads);
|
|
pipelineStage[stNum]->setTimeBuffer(&timeBuffer);
|
|
|
|
// Take Care of 1st/Nth stages
|
|
if (stNum > 0)
|
|
pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]);
|
|
if (stNum < NumStages - 1)
|
|
pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]);
|
|
}
|
|
|
|
// Initialize thread specific variables
|
|
for (ThreadID tid = 0; tid < numThreads; tid++) {
|
|
archRegDepMap[tid].setCPU(this);
|
|
|
|
nonSpecInstActive[tid] = false;
|
|
nonSpecSeqNum[tid] = 0;
|
|
|
|
squashSeqNum[tid] = MaxAddr;
|
|
lastSquashCycle[tid] = 0;
|
|
|
|
memset(intRegs[tid], 0, sizeof(intRegs[tid]));
|
|
memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid]));
|
|
isa[tid].clear();
|
|
|
|
// Define dummy instructions and resource requests to be used.
|
|
dummyInst[tid] = new InOrderDynInst(this,
|
|
thread[tid],
|
|
0,
|
|
tid,
|
|
asid[tid]);
|
|
|
|
dummyReq[tid] = new ResourceRequest(resPool->getResource(0));
|
|
|
|
#if FULL_SYSTEM
|
|
// Use this dummy inst to force squashing behind every instruction
|
|
// in pipeline
|
|
dummyTrapInst[tid] = new InOrderDynInst(this, NULL, 0, 0, 0);
|
|
dummyTrapInst[tid]->seqNum = 0;
|
|
dummyTrapInst[tid]->squashSeqNum = 0;
|
|
dummyTrapInst[tid]->setTid(tid);
|
|
#endif
|
|
|
|
trapPending[tid] = false;
|
|
|
|
}
|
|
|
|
dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0);
|
|
dummyReqInst->setSquashed();
|
|
dummyReqInst->resetInstCount();
|
|
|
|
dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0);
|
|
dummyBufferInst->setSquashed();
|
|
dummyBufferInst->resetInstCount();
|
|
|
|
endOfSkedIt = skedCache.end();
|
|
frontEndSked = createFrontEndSked();
|
|
faultSked = createFaultSked();
|
|
|
|
lastRunningCycle = curTick();
|
|
|
|
lockAddr = 0;
|
|
lockFlag = false;
|
|
|
|
// Schedule First Tick Event, CPU will reschedule itself from here on out.
|
|
scheduleTickEvent(0);
|
|
}
|
|
|
|
InOrderCPU::~InOrderCPU()
|
|
{
|
|
delete resPool;
|
|
|
|
SkedCacheIt sked_it = skedCache.begin();
|
|
SkedCacheIt sked_end = skedCache.end();
|
|
|
|
while (sked_it != sked_end) {
|
|
delete (*sked_it).second;
|
|
sked_it++;
|
|
}
|
|
skedCache.clear();
|
|
}
|
|
|
|
m5::hash_map<InOrderCPU::SkedID, ThePipeline::RSkedPtr> InOrderCPU::skedCache;
|
|
|
|
RSkedPtr
|
|
InOrderCPU::createFrontEndSked()
|
|
{
|
|
RSkedPtr res_sked = new ResourceSked();
|
|
int stage_num = 0;
|
|
StageScheduler F(res_sked, stage_num++);
|
|
StageScheduler D(res_sked, stage_num++);
|
|
|
|
// FETCH
|
|
F.needs(FetchSeq, FetchSeqUnit::AssignNextPC);
|
|
F.needs(ICache, FetchUnit::InitiateFetch);
|
|
|
|
// DECODE
|
|
D.needs(ICache, FetchUnit::CompleteFetch);
|
|
D.needs(Decode, DecodeUnit::DecodeInst);
|
|
D.needs(BPred, BranchPredictor::PredictBranch);
|
|
D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC);
|
|
|
|
|
|
DPRINTF(SkedCache, "Resource Sked created for instruction Front End\n");
|
|
|
|
return res_sked;
|
|
}
|
|
|
|
RSkedPtr
|
|
InOrderCPU::createFaultSked()
|
|
{
|
|
RSkedPtr res_sked = new ResourceSked();
|
|
StageScheduler W(res_sked, NumStages - 1);
|
|
W.needs(Grad, GraduationUnit::CheckFault);
|
|
DPRINTF(SkedCache, "Resource Sked created for instruction Faults\n");
|
|
return res_sked;
|
|
}
|
|
|
|
RSkedPtr
|
|
InOrderCPU::createBackEndSked(DynInstPtr inst)
|
|
{
|
|
RSkedPtr res_sked = lookupSked(inst);
|
|
if (res_sked != NULL) {
|
|
DPRINTF(SkedCache, "Found %s in sked cache.\n",
|
|
inst->instName());
|
|
return res_sked;
|
|
} else {
|
|
res_sked = new ResourceSked();
|
|
}
|
|
|
|
int stage_num = ThePipeline::BackEndStartStage;
|
|
StageScheduler X(res_sked, stage_num++);
|
|
StageScheduler M(res_sked, stage_num++);
|
|
StageScheduler W(res_sked, stage_num++);
|
|
|
|
if (!inst->staticInst) {
|
|
warn_once("Static Instruction Object Not Set. Can't Create"
|
|
" Back End Schedule");
|
|
return NULL;
|
|
}
|
|
|
|
// EXECUTE
|
|
X.needs(RegManager, UseDefUnit::MarkDestRegs);
|
|
for (int idx=0; idx < inst->numSrcRegs(); idx++) {
|
|
if (!idx || !inst->isStore()) {
|
|
X.needs(RegManager, UseDefUnit::ReadSrcReg, idx);
|
|
}
|
|
}
|
|
|
|
//@todo: schedule non-spec insts to operate on this cycle
|
|
// as long as all previous insts are done
|
|
if ( inst->isNonSpeculative() ) {
|
|
// skip execution of non speculative insts until later
|
|
} else if ( inst->isMemRef() ) {
|
|
if ( inst->isLoad() ) {
|
|
X.needs(AGEN, AGENUnit::GenerateAddr);
|
|
}
|
|
} else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
|
|
X.needs(MDU, MultDivUnit::StartMultDiv);
|
|
} else {
|
|
X.needs(ExecUnit, ExecutionUnit::ExecuteInst);
|
|
}
|
|
|
|
// MEMORY
|
|
if (!inst->isNonSpeculative()) {
|
|
if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
|
|
M.needs(MDU, MultDivUnit::EndMultDiv);
|
|
}
|
|
|
|
if ( inst->isLoad() ) {
|
|
M.needs(DCache, CacheUnit::InitiateReadData);
|
|
if (inst->splitInst)
|
|
M.needs(DCache, CacheUnit::InitSecondSplitRead);
|
|
} else if ( inst->isStore() ) {
|
|
for (int i = 1; i < inst->numSrcRegs(); i++ ) {
|
|
M.needs(RegManager, UseDefUnit::ReadSrcReg, i);
|
|
}
|
|
M.needs(AGEN, AGENUnit::GenerateAddr);
|
|
M.needs(DCache, CacheUnit::InitiateWriteData);
|
|
if (inst->splitInst)
|
|
M.needs(DCache, CacheUnit::InitSecondSplitWrite);
|
|
}
|
|
}
|
|
|
|
// WRITEBACK
|
|
if (!inst->isNonSpeculative()) {
|
|
if ( inst->isLoad() ) {
|
|
W.needs(DCache, CacheUnit::CompleteReadData);
|
|
if (inst->splitInst)
|
|
W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
|
|
} else if ( inst->isStore() ) {
|
|
W.needs(DCache, CacheUnit::CompleteWriteData);
|
|
if (inst->splitInst)
|
|
W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
|
|
}
|
|
} else {
|
|
// Finally, Execute Speculative Data
|
|
if (inst->isMemRef()) {
|
|
if (inst->isLoad()) {
|
|
W.needs(AGEN, AGENUnit::GenerateAddr);
|
|
W.needs(DCache, CacheUnit::InitiateReadData);
|
|
if (inst->splitInst)
|
|
W.needs(DCache, CacheUnit::InitSecondSplitRead);
|
|
W.needs(DCache, CacheUnit::CompleteReadData);
|
|
if (inst->splitInst)
|
|
W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
|
|
} else if (inst->isStore()) {
|
|
if ( inst->numSrcRegs() >= 2 ) {
|
|
W.needs(RegManager, UseDefUnit::ReadSrcReg, 1);
|
|
}
|
|
W.needs(AGEN, AGENUnit::GenerateAddr);
|
|
W.needs(DCache, CacheUnit::InitiateWriteData);
|
|
if (inst->splitInst)
|
|
W.needs(DCache, CacheUnit::InitSecondSplitWrite);
|
|
W.needs(DCache, CacheUnit::CompleteWriteData);
|
|
if (inst->splitInst)
|
|
W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
|
|
}
|
|
} else {
|
|
W.needs(ExecUnit, ExecutionUnit::ExecuteInst);
|
|
}
|
|
}
|
|
|
|
W.needs(Grad, GraduationUnit::CheckFault);
|
|
|
|
for (int idx=0; idx < inst->numDestRegs(); idx++) {
|
|
W.needs(RegManager, UseDefUnit::WriteDestReg, idx);
|
|
}
|
|
|
|
if (inst->isControl())
|
|
W.needs(BPred, BranchPredictor::UpdatePredictor);
|
|
|
|
W.needs(Grad, GraduationUnit::GraduateInst);
|
|
|
|
// Insert Back Schedule into our cache of
|
|
// resource schedules
|
|
addToSkedCache(inst, res_sked);
|
|
|
|
DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n",
|
|
inst->instName(), inst->getMachInst());
|
|
res_sked->print();
|
|
|
|
return res_sked;
|
|
}
|
|
|
|
void
|
|
InOrderCPU::regStats()
|
|
{
|
|
/* Register the Resource Pool's stats here.*/
|
|
resPool->regStats();
|
|
|
|
/* Register for each Pipeline Stage */
|
|
for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) {
|
|
pipelineStage[stage_num]->regStats();
|
|
}
|
|
|
|
/* Register any of the InOrderCPU's stats here.*/
|
|
instsPerCtxtSwitch
|
|
.name(name() + ".instsPerContextSwitch")
|
|
.desc("Instructions Committed Per Context Switch")
|
|
.prereq(instsPerCtxtSwitch);
|
|
|
|
numCtxtSwitches
|
|
.name(name() + ".contextSwitches")
|
|
.desc("Number of context switches");
|
|
|
|
comLoads
|
|
.name(name() + ".comLoads")
|
|
.desc("Number of Load instructions committed");
|
|
|
|
comStores
|
|
.name(name() + ".comStores")
|
|
.desc("Number of Store instructions committed");
|
|
|
|
comBranches
|
|
.name(name() + ".comBranches")
|
|
.desc("Number of Branches instructions committed");
|
|
|
|
comNops
|
|
.name(name() + ".comNops")
|
|
.desc("Number of Nop instructions committed");
|
|
|
|
comNonSpec
|
|
.name(name() + ".comNonSpec")
|
|
.desc("Number of Non-Speculative instructions committed");
|
|
|
|
comInts
|
|
.name(name() + ".comInts")
|
|
.desc("Number of Integer instructions committed");
|
|
|
|
comFloats
|
|
.name(name() + ".comFloats")
|
|
.desc("Number of Floating Point instructions committed");
|
|
|
|
timesIdled
|
|
.name(name() + ".timesIdled")
|
|
.desc("Number of times that the entire CPU went into an idle state and"
|
|
" unscheduled itself")
|
|
.prereq(timesIdled);
|
|
|
|
idleCycles
|
|
.name(name() + ".idleCycles")
|
|
.desc("Number of cycles cpu's stages were not processed");
|
|
|
|
runCycles
|
|
.name(name() + ".runCycles")
|
|
.desc("Number of cycles cpu stages are processed.");
|
|
|
|
activity
|
|
.name(name() + ".activity")
|
|
.desc("Percentage of cycles cpu is active")
|
|
.precision(6);
|
|
activity = (runCycles / numCycles) * 100;
|
|
|
|
threadCycles
|
|
.init(numThreads)
|
|
.name(name() + ".threadCycles")
|
|
.desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)");
|
|
|
|
smtCycles
|
|
.name(name() + ".smtCycles")
|
|
.desc("Total number of cycles that the CPU was in SMT-mode");
|
|
|
|
committedInsts
|
|
.init(numThreads)
|
|
.name(name() + ".committedInsts")
|
|
.desc("Number of Instructions Simulated (Per-Thread)");
|
|
|
|
smtCommittedInsts
|
|
.init(numThreads)
|
|
.name(name() + ".smtCommittedInsts")
|
|
.desc("Number of SMT Instructions Simulated (Per-Thread)");
|
|
|
|
totalCommittedInsts
|
|
.name(name() + ".committedInsts_total")
|
|
.desc("Number of Instructions Simulated (Total)");
|
|
|
|
cpi
|
|
.name(name() + ".cpi")
|
|
.desc("CPI: Cycles Per Instruction (Per-Thread)")
|
|
.precision(6);
|
|
cpi = numCycles / committedInsts;
|
|
|
|
smtCpi
|
|
.name(name() + ".smt_cpi")
|
|
.desc("CPI: Total SMT-CPI")
|
|
.precision(6);
|
|
smtCpi = smtCycles / smtCommittedInsts;
|
|
|
|
totalCpi
|
|
.name(name() + ".cpi_total")
|
|
.desc("CPI: Total CPI of All Threads")
|
|
.precision(6);
|
|
totalCpi = numCycles / totalCommittedInsts;
|
|
|
|
ipc
|
|
.name(name() + ".ipc")
|
|
.desc("IPC: Instructions Per Cycle (Per-Thread)")
|
|
.precision(6);
|
|
ipc = committedInsts / numCycles;
|
|
|
|
smtIpc
|
|
.name(name() + ".smt_ipc")
|
|
.desc("IPC: Total SMT-IPC")
|
|
.precision(6);
|
|
smtIpc = smtCommittedInsts / smtCycles;
|
|
|
|
totalIpc
|
|
.name(name() + ".ipc_total")
|
|
.desc("IPC: Total IPC of All Threads")
|
|
.precision(6);
|
|
totalIpc = totalCommittedInsts / numCycles;
|
|
|
|
BaseCPU::regStats();
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::tick()
|
|
{
|
|
DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n");
|
|
|
|
++numCycles;
|
|
|
|
#if FULL_SYSTEM
|
|
checkForInterrupts();
|
|
#endif
|
|
|
|
bool pipes_idle = true;
|
|
//Tick each of the stages
|
|
for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
|
|
pipelineStage[stNum]->tick();
|
|
|
|
pipes_idle = pipes_idle && pipelineStage[stNum]->idle;
|
|
}
|
|
|
|
if (pipes_idle)
|
|
idleCycles++;
|
|
else
|
|
runCycles++;
|
|
|
|
// Now advance the time buffers one tick
|
|
timeBuffer.advance();
|
|
for (int sqNum=0; sqNum < NumStages - 1; sqNum++) {
|
|
stageQueue[sqNum]->advance();
|
|
}
|
|
activityRec.advance();
|
|
|
|
// Any squashed events, or insts then remove them now
|
|
cleanUpRemovedEvents();
|
|
cleanUpRemovedInsts();
|
|
|
|
// Re-schedule CPU for this cycle
|
|
if (!tickEvent.scheduled()) {
|
|
if (_status == SwitchedOut) {
|
|
// increment stat
|
|
lastRunningCycle = curTick();
|
|
} else if (!activityRec.active()) {
|
|
DPRINTF(InOrderCPU, "sleeping CPU.\n");
|
|
lastRunningCycle = curTick();
|
|
timesIdled++;
|
|
} else {
|
|
//Tick next_tick = curTick() + cycles(1);
|
|
//tickEvent.schedule(next_tick);
|
|
schedule(&tickEvent, nextCycle(curTick() + 1));
|
|
DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n",
|
|
nextCycle(curTick() + 1));
|
|
}
|
|
}
|
|
|
|
tickThreadStats();
|
|
updateThreadPriority();
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::init()
|
|
{
|
|
if (!deferRegistration) {
|
|
registerThreadContexts();
|
|
}
|
|
|
|
// Set inSyscall so that the CPU doesn't squash when initially
|
|
// setting up registers.
|
|
for (ThreadID tid = 0; tid < numThreads; ++tid)
|
|
thread[tid]->inSyscall = true;
|
|
|
|
#if FULL_SYSTEM
|
|
for (ThreadID tid = 0; tid < numThreads; tid++) {
|
|
ThreadContext *src_tc = threadContexts[tid];
|
|
TheISA::initCPU(src_tc, src_tc->contextId());
|
|
// Initialise the ThreadContext's memory proxies
|
|
thread[tid]->initMemProxies(thread[tid]->getTC());
|
|
}
|
|
#endif
|
|
|
|
// Clear inSyscall.
|
|
for (ThreadID tid = 0; tid < numThreads; ++tid)
|
|
thread[tid]->inSyscall = false;
|
|
|
|
// Call Initializiation Routine for Resource Pool
|
|
resPool->init();
|
|
}
|
|
|
|
Port*
|
|
InOrderCPU::getPort(const std::string &if_name, int idx)
|
|
{
|
|
return resPool->getPort(if_name, idx);
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
Fault
|
|
InOrderCPU::hwrei(ThreadID tid)
|
|
{
|
|
#if THE_ISA == ALPHA_ISA
|
|
// Need to clear the lock flag upon returning from an interrupt.
|
|
setMiscRegNoEffect(AlphaISA::MISCREG_LOCKFLAG, false, tid);
|
|
|
|
thread[tid]->kernelStats->hwrei();
|
|
// FIXME: XXX check for interrupts? XXX
|
|
#endif
|
|
|
|
return NoFault;
|
|
}
|
|
|
|
|
|
bool
|
|
InOrderCPU::simPalCheck(int palFunc, ThreadID tid)
|
|
{
|
|
#if THE_ISA == ALPHA_ISA
|
|
if (this->thread[tid]->kernelStats)
|
|
this->thread[tid]->kernelStats->callpal(palFunc,
|
|
this->threadContexts[tid]);
|
|
|
|
switch (palFunc) {
|
|
case PAL::halt:
|
|
halt();
|
|
if (--System::numSystemsRunning == 0)
|
|
exitSimLoop("all cpus halted");
|
|
break;
|
|
|
|
case PAL::bpt:
|
|
case PAL::bugchk:
|
|
if (this->system->breakpoint())
|
|
return false;
|
|
break;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void
|
|
InOrderCPU::checkForInterrupts()
|
|
{
|
|
for (int i = 0; i < threadContexts.size(); i++) {
|
|
ThreadContext *tc = threadContexts[i];
|
|
|
|
if (interrupts->checkInterrupts(tc)) {
|
|
Fault interrupt = interrupts->getInterrupt(tc);
|
|
|
|
if (interrupt != NoFault) {
|
|
DPRINTF(Interrupt, "Processing Intterupt for [tid:%i].\n",
|
|
tc->threadId());
|
|
|
|
ThreadID tid = tc->threadId();
|
|
interrupts->updateIntrInfo(tc);
|
|
|
|
// Squash from Last Stage in Pipeline
|
|
unsigned last_stage = NumStages - 1;
|
|
dummyTrapInst[tid]->squashingStage = last_stage;
|
|
pipelineStage[last_stage]->setupSquash(dummyTrapInst[tid],
|
|
tid);
|
|
|
|
// By default, setupSquash will always squash from stage + 1
|
|
pipelineStage[BackEndStartStage - 1]->setupSquash(dummyTrapInst[tid],
|
|
tid);
|
|
|
|
// Schedule Squash Through-out Resource Pool
|
|
resPool->scheduleEvent(
|
|
(InOrderCPU::CPUEventType)ResourcePool::SquashAll,
|
|
dummyTrapInst[tid], 0);
|
|
|
|
// Finally, Setup Trap to happen at end of cycle
|
|
trapContext(interrupt, tid, dummyTrapInst[tid]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Fault
|
|
InOrderCPU::getInterrupts()
|
|
{
|
|
// Check if there are any outstanding interrupts
|
|
return interrupts->getInterrupt(threadContexts[0]);
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::processInterrupts(Fault interrupt)
|
|
{
|
|
// Check for interrupts here. For now can copy the code that
|
|
// exists within isa_fullsys_traits.hh. Also assume that thread 0
|
|
// is the one that handles the interrupts.
|
|
// @todo: Possibly consolidate the interrupt checking code.
|
|
// @todo: Allow other threads to handle interrupts.
|
|
|
|
assert(interrupt != NoFault);
|
|
interrupts->updateIntrInfo(threadContexts[0]);
|
|
|
|
DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name());
|
|
|
|
// Note: Context ID ok here? Impl. of FS mode needs to revisit this
|
|
trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst);
|
|
}
|
|
|
|
#endif
|
|
|
|
void
|
|
InOrderCPU::trapContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
|
|
{
|
|
scheduleCpuEvent(Trap, fault, tid, inst, delay);
|
|
trapPending[tid] = true;
|
|
}
|
|
|
|
void
|
|
InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst)
|
|
{
|
|
fault->invoke(tcBase(tid), inst->staticInst);
|
|
removePipelineStalls(tid);
|
|
}
|
|
|
|
void
|
|
InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid, int delay)
|
|
{
|
|
scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay);
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num,
|
|
ThreadID tid)
|
|
{
|
|
DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n");
|
|
|
|
// Squash all instructions in each stage including
|
|
// instruction that caused the squash (seq_num - 1)
|
|
// NOTE: The stage bandwidth needs to be cleared so thats why
|
|
// the stalling instruction is squashed as well. The stalled
|
|
// instruction is previously placed in another intermediate buffer
|
|
// while it's stall is being handled.
|
|
InstSeqNum squash_seq_num = seq_num - 1;
|
|
|
|
for (int stNum=stage_num; stNum >= 0 ; stNum--) {
|
|
pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid);
|
|
}
|
|
}
|
|
|
|
void
|
|
InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault,
|
|
ThreadID tid, DynInstPtr inst,
|
|
unsigned delay, CPUEventPri event_pri)
|
|
{
|
|
CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst,
|
|
event_pri);
|
|
|
|
Tick sked_tick = nextCycle(curTick() + ticks(delay));
|
|
if (delay >= 0) {
|
|
DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n",
|
|
eventNames[c_event], curTick() + delay, tid);
|
|
schedule(cpu_event, sked_tick);
|
|
} else {
|
|
cpu_event->process();
|
|
cpuEventRemoveList.push(cpu_event);
|
|
}
|
|
|
|
// Broadcast event to the Resource Pool
|
|
// Need to reset tid just in case this is a dummy instruction
|
|
inst->setTid(tid);
|
|
resPool->scheduleEvent(c_event, inst, 0, 0, tid);
|
|
}
|
|
|
|
bool
|
|
InOrderCPU::isThreadActive(ThreadID tid)
|
|
{
|
|
list<ThreadID>::iterator isActive =
|
|
std::find(activeThreads.begin(), activeThreads.end(), tid);
|
|
|
|
return (isActive != activeThreads.end());
|
|
}
|
|
|
|
bool
|
|
InOrderCPU::isThreadReady(ThreadID tid)
|
|
{
|
|
list<ThreadID>::iterator isReady =
|
|
std::find(readyThreads.begin(), readyThreads.end(), tid);
|
|
|
|
return (isReady != readyThreads.end());
|
|
}
|
|
|
|
bool
|
|
InOrderCPU::isThreadSuspended(ThreadID tid)
|
|
{
|
|
list<ThreadID>::iterator isSuspended =
|
|
std::find(suspendedThreads.begin(), suspendedThreads.end(), tid);
|
|
|
|
return (isSuspended != suspendedThreads.end());
|
|
}
|
|
|
|
void
|
|
InOrderCPU::activateNextReadyThread()
|
|
{
|
|
if (readyThreads.size() >= 1) {
|
|
ThreadID ready_tid = readyThreads.front();
|
|
|
|
// Activate in Pipeline
|
|
activateThread(ready_tid);
|
|
|
|
// Activate in Resource Pool
|
|
resPool->activateThread(ready_tid);
|
|
|
|
list<ThreadID>::iterator ready_it =
|
|
std::find(readyThreads.begin(), readyThreads.end(), ready_tid);
|
|
readyThreads.erase(ready_it);
|
|
} else {
|
|
DPRINTF(InOrderCPU,
|
|
"Attempting to activate new thread, but No Ready Threads to"
|
|
"activate.\n");
|
|
DPRINTF(InOrderCPU,
|
|
"Unable to switch to next active thread.\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
InOrderCPU::activateThread(ThreadID tid)
|
|
{
|
|
if (isThreadSuspended(tid)) {
|
|
DPRINTF(InOrderCPU,
|
|
"Removing [tid:%i] from suspended threads list.\n", tid);
|
|
|
|
list<ThreadID>::iterator susp_it =
|
|
std::find(suspendedThreads.begin(), suspendedThreads.end(),
|
|
tid);
|
|
suspendedThreads.erase(susp_it);
|
|
}
|
|
|
|
if (threadModel == SwitchOnCacheMiss &&
|
|
numActiveThreads() == 1) {
|
|
DPRINTF(InOrderCPU,
|
|
"Ignoring activation of [tid:%i], since [tid:%i] is "
|
|
"already running.\n", tid, activeThreadId());
|
|
|
|
DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n",
|
|
tid);
|
|
|
|
readyThreads.push_back(tid);
|
|
|
|
} else if (!isThreadActive(tid)) {
|
|
DPRINTF(InOrderCPU,
|
|
"Adding [tid:%i] to active threads list.\n", tid);
|
|
activeThreads.push_back(tid);
|
|
|
|
activateThreadInPipeline(tid);
|
|
|
|
thread[tid]->lastActivate = curTick();
|
|
|
|
tcBase(tid)->setStatus(ThreadContext::Active);
|
|
|
|
wakeCPU();
|
|
|
|
numCtxtSwitches++;
|
|
}
|
|
}
|
|
|
|
void
|
|
InOrderCPU::activateThreadInPipeline(ThreadID tid)
|
|
{
|
|
for (int stNum=0; stNum < NumStages; stNum++) {
|
|
pipelineStage[stNum]->activateThread(tid);
|
|
}
|
|
}
|
|
|
|
void
|
|
InOrderCPU::deactivateContext(ThreadID tid, int delay)
|
|
{
|
|
DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid);
|
|
|
|
scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay);
|
|
|
|
// Be sure to signal that there's some activity so the CPU doesn't
|
|
// deschedule itself.
|
|
activityRec.activity();
|
|
|
|
_status = Running;
|
|
}
|
|
|
|
void
|
|
InOrderCPU::deactivateThread(ThreadID tid)
|
|
{
|
|
DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid);
|
|
|
|
if (isThreadActive(tid)) {
|
|
DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n",
|
|
tid);
|
|
list<ThreadID>::iterator thread_it =
|
|
std::find(activeThreads.begin(), activeThreads.end(), tid);
|
|
|
|
removePipelineStalls(*thread_it);
|
|
|
|
activeThreads.erase(thread_it);
|
|
|
|
// Ideally, this should be triggered from the
|
|
// suspendContext/Thread functions
|
|
tcBase(tid)->setStatus(ThreadContext::Suspended);
|
|
}
|
|
|
|
assert(!isThreadActive(tid));
|
|
}
|
|
|
|
void
|
|
InOrderCPU::removePipelineStalls(ThreadID tid)
|
|
{
|
|
DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n",
|
|
tid);
|
|
|
|
for (int stNum = 0; stNum < NumStages ; stNum++) {
|
|
pipelineStage[stNum]->removeStalls(tid);
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
InOrderCPU::updateThreadPriority()
|
|
{
|
|
if (activeThreads.size() > 1)
|
|
{
|
|
//DEFAULT TO ROUND ROBIN SCHEME
|
|
//e.g. Move highest priority to end of thread list
|
|
list<ThreadID>::iterator list_begin = activeThreads.begin();
|
|
|
|
unsigned high_thread = *list_begin;
|
|
|
|
activeThreads.erase(list_begin);
|
|
|
|
activeThreads.push_back(high_thread);
|
|
}
|
|
}
|
|
|
|
inline void
|
|
InOrderCPU::tickThreadStats()
|
|
{
|
|
/** Keep track of cycles that each thread is active */
|
|
list<ThreadID>::iterator thread_it = activeThreads.begin();
|
|
while (thread_it != activeThreads.end()) {
|
|
threadCycles[*thread_it]++;
|
|
thread_it++;
|
|
}
|
|
|
|
// Keep track of cycles where SMT is active
|
|
if (activeThreads.size() > 1) {
|
|
smtCycles++;
|
|
}
|
|
}
|
|
|
|
void
|
|
InOrderCPU::activateContext(ThreadID tid, int delay)
|
|
{
|
|
DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid);
|
|
|
|
|
|
scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay);
|
|
|
|
// Be sure to signal that there's some activity so the CPU doesn't
|
|
// deschedule itself.
|
|
activityRec.activity();
|
|
|
|
_status = Running;
|
|
}
|
|
|
|
void
|
|
InOrderCPU::activateNextReadyContext(int delay)
|
|
{
|
|
DPRINTF(InOrderCPU,"Activating next ready thread\n");
|
|
|
|
scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0],
|
|
delay, ActivateNextReadyThread_Pri);
|
|
|
|
// Be sure to signal that there's some activity so the CPU doesn't
|
|
// deschedule itself.
|
|
activityRec.activity();
|
|
|
|
_status = Running;
|
|
}
|
|
|
|
void
|
|
InOrderCPU::haltContext(ThreadID tid, int delay)
|
|
{
|
|
DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid);
|
|
|
|
scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid], delay);
|
|
|
|
activityRec.activity();
|
|
}
|
|
|
|
void
|
|
InOrderCPU::haltThread(ThreadID tid)
|
|
{
|
|
DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid);
|
|
deactivateThread(tid);
|
|
squashThreadInPipeline(tid);
|
|
haltedThreads.push_back(tid);
|
|
|
|
tcBase(tid)->setStatus(ThreadContext::Halted);
|
|
|
|
if (threadModel == SwitchOnCacheMiss) {
|
|
activateNextReadyContext();
|
|
}
|
|
}
|
|
|
|
void
|
|
InOrderCPU::suspendContext(ThreadID tid, int delay)
|
|
{
|
|
scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid], delay);
|
|
}
|
|
|
|
void
|
|
InOrderCPU::suspendThread(ThreadID tid)
|
|
{
|
|
DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n",
|
|
tid);
|
|
deactivateThread(tid);
|
|
suspendedThreads.push_back(tid);
|
|
thread[tid]->lastSuspend = curTick();
|
|
|
|
tcBase(tid)->setStatus(ThreadContext::Suspended);
|
|
}
|
|
|
|
void
|
|
InOrderCPU::squashThreadInPipeline(ThreadID tid)
|
|
{
|
|
//Squash all instructions in each stage
|
|
for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
|
|
pipelineStage[stNum]->squash(0 /*seq_num*/, tid);
|
|
}
|
|
}
|
|
|
|
PipelineStage*
|
|
InOrderCPU::getPipeStage(int stage_num)
|
|
{
|
|
return pipelineStage[stage_num];
|
|
}
|
|
|
|
|
|
RegIndex
|
|
InOrderCPU::flattenRegIdx(RegIndex reg_idx, RegType ®_type, ThreadID tid)
|
|
{
|
|
if (reg_idx < FP_Base_DepTag) {
|
|
reg_type = IntType;
|
|
return isa[tid].flattenIntIndex(reg_idx);
|
|
} else if (reg_idx < Ctrl_Base_DepTag) {
|
|
reg_type = FloatType;
|
|
reg_idx -= FP_Base_DepTag;
|
|
return isa[tid].flattenFloatIndex(reg_idx);
|
|
} else {
|
|
reg_type = MiscType;
|
|
return reg_idx - TheISA::Ctrl_Base_DepTag;
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
InOrderCPU::readIntReg(RegIndex reg_idx, ThreadID tid)
|
|
{
|
|
DPRINTF(IntRegs, "[tid:%i]: Reading Int. Reg %i as %x\n",
|
|
tid, reg_idx, intRegs[tid][reg_idx]);
|
|
|
|
return intRegs[tid][reg_idx];
|
|
}
|
|
|
|
FloatReg
|
|
InOrderCPU::readFloatReg(RegIndex reg_idx, ThreadID tid)
|
|
{
|
|
DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
|
|
tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
|
|
|
|
return floatRegs.f[tid][reg_idx];
|
|
}
|
|
|
|
FloatRegBits
|
|
InOrderCPU::readFloatRegBits(RegIndex reg_idx, ThreadID tid)
|
|
{
|
|
DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
|
|
tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
|
|
|
|
return floatRegs.i[tid][reg_idx];
|
|
}
|
|
|
|
void
|
|
InOrderCPU::setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid)
|
|
{
|
|
if (reg_idx == TheISA::ZeroReg) {
|
|
DPRINTF(IntRegs, "[tid:%i]: Ignoring Setting of ISA-ZeroReg "
|
|
"(Int. Reg %i) to %x\n", tid, reg_idx, val);
|
|
return;
|
|
} else {
|
|
DPRINTF(IntRegs, "[tid:%i]: Setting Int. Reg %i to %x\n",
|
|
tid, reg_idx, val);
|
|
|
|
intRegs[tid][reg_idx] = val;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid)
|
|
{
|
|
floatRegs.f[tid][reg_idx] = val;
|
|
DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
|
|
"%x, %08f\n",
|
|
tid, reg_idx,
|
|
floatRegs.i[tid][reg_idx],
|
|
floatRegs.f[tid][reg_idx]);
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid)
|
|
{
|
|
floatRegs.i[tid][reg_idx] = val;
|
|
DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
|
|
"%x, %08f\n",
|
|
tid, reg_idx,
|
|
floatRegs.i[tid][reg_idx],
|
|
floatRegs.f[tid][reg_idx]);
|
|
}
|
|
|
|
uint64_t
|
|
InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid)
|
|
{
|
|
// If Default value is set, then retrieve target thread
|
|
if (tid == InvalidThreadID) {
|
|
tid = TheISA::getTargetThread(tcBase(tid));
|
|
}
|
|
|
|
if (reg_idx < FP_Base_DepTag) {
|
|
// Integer Register File
|
|
return readIntReg(reg_idx, tid);
|
|
} else if (reg_idx < Ctrl_Base_DepTag) {
|
|
// Float Register File
|
|
reg_idx -= FP_Base_DepTag;
|
|
return readFloatRegBits(reg_idx, tid);
|
|
} else {
|
|
reg_idx -= Ctrl_Base_DepTag;
|
|
return readMiscReg(reg_idx, tid); // Misc. Register File
|
|
}
|
|
}
|
|
void
|
|
InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val,
|
|
ThreadID tid)
|
|
{
|
|
// If Default value is set, then retrieve target thread
|
|
if (tid == InvalidThreadID) {
|
|
tid = TheISA::getTargetThread(tcBase(tid));
|
|
}
|
|
|
|
if (reg_idx < FP_Base_DepTag) { // Integer Register File
|
|
setIntReg(reg_idx, val, tid);
|
|
} else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File
|
|
reg_idx -= FP_Base_DepTag;
|
|
setFloatRegBits(reg_idx, val, tid);
|
|
} else {
|
|
reg_idx -= Ctrl_Base_DepTag;
|
|
setMiscReg(reg_idx, val, tid); // Misc. Register File
|
|
}
|
|
}
|
|
|
|
MiscReg
|
|
InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid)
|
|
{
|
|
return isa[tid].readMiscRegNoEffect(misc_reg);
|
|
}
|
|
|
|
MiscReg
|
|
InOrderCPU::readMiscReg(int misc_reg, ThreadID tid)
|
|
{
|
|
return isa[tid].readMiscReg(misc_reg, tcBase(tid));
|
|
}
|
|
|
|
void
|
|
InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid)
|
|
{
|
|
isa[tid].setMiscRegNoEffect(misc_reg, val);
|
|
}
|
|
|
|
void
|
|
InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid)
|
|
{
|
|
isa[tid].setMiscReg(misc_reg, val, tcBase(tid));
|
|
}
|
|
|
|
|
|
InOrderCPU::ListIt
|
|
InOrderCPU::addInst(DynInstPtr inst)
|
|
{
|
|
ThreadID tid = inst->readTid();
|
|
|
|
instList[tid].push_back(inst);
|
|
|
|
return --(instList[tid].end());
|
|
}
|
|
|
|
InOrderCPU::ListIt
|
|
InOrderCPU::findInst(InstSeqNum seq_num, ThreadID tid)
|
|
{
|
|
ListIt it = instList[tid].begin();
|
|
ListIt end = instList[tid].end();
|
|
|
|
while (it != end) {
|
|
if ((*it)->seqNum == seq_num)
|
|
return it;
|
|
else if ((*it)->seqNum > seq_num)
|
|
break;
|
|
|
|
it++;
|
|
}
|
|
|
|
return instList[tid].end();
|
|
}
|
|
|
|
void
|
|
InOrderCPU::updateContextSwitchStats()
|
|
{
|
|
// Set Average Stat Here, then reset to 0
|
|
instsPerCtxtSwitch = instsPerSwitch;
|
|
instsPerSwitch = 0;
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::instDone(DynInstPtr inst, ThreadID tid)
|
|
{
|
|
// Set the nextPC to be fetched if this is the last instruction
|
|
// committed
|
|
// ========
|
|
// This contributes to the precise state of the CPU
|
|
// which can be used when restoring a thread to the CPU after after any
|
|
// type of context switching activity (fork, exception, etc.)
|
|
TheISA::PCState comm_pc = inst->pcState();
|
|
lastCommittedPC[tid] = comm_pc;
|
|
TheISA::advancePC(comm_pc, inst->staticInst);
|
|
pcState(comm_pc, tid);
|
|
|
|
//@todo: may be unnecessary with new-ISA-specific branch handling code
|
|
if (inst->isControl()) {
|
|
thread[tid]->lastGradIsBranch = true;
|
|
thread[tid]->lastBranchPC = inst->pcState();
|
|
TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst);
|
|
} else {
|
|
thread[tid]->lastGradIsBranch = false;
|
|
}
|
|
|
|
|
|
// Finalize Trace Data For Instruction
|
|
if (inst->traceData) {
|
|
//inst->traceData->setCycle(curTick());
|
|
inst->traceData->setFetchSeq(inst->seqNum);
|
|
//inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst);
|
|
inst->traceData->dump();
|
|
delete inst->traceData;
|
|
inst->traceData = NULL;
|
|
}
|
|
|
|
// Increment active thread's instruction count
|
|
instsPerSwitch++;
|
|
|
|
// Increment thread-state's instruction count
|
|
thread[tid]->numInst++;
|
|
|
|
// Increment thread-state's instruction stats
|
|
thread[tid]->numInsts++;
|
|
|
|
// Count committed insts per thread stats
|
|
committedInsts[tid]++;
|
|
|
|
// Count total insts committed stat
|
|
totalCommittedInsts++;
|
|
|
|
// Count SMT-committed insts per thread stat
|
|
if (numActiveThreads() > 1) {
|
|
smtCommittedInsts[tid]++;
|
|
}
|
|
|
|
// Instruction-Mix Stats
|
|
if (inst->isLoad()) {
|
|
comLoads++;
|
|
} else if (inst->isStore()) {
|
|
comStores++;
|
|
} else if (inst->isControl()) {
|
|
comBranches++;
|
|
} else if (inst->isNop()) {
|
|
comNops++;
|
|
} else if (inst->isNonSpeculative()) {
|
|
comNonSpec++;
|
|
} else if (inst->isInteger()) {
|
|
comInts++;
|
|
} else if (inst->isFloating()) {
|
|
comFloats++;
|
|
}
|
|
|
|
// Check for instruction-count-based events.
|
|
comInstEventQueue[tid]->serviceEvents(thread[tid]->numInst);
|
|
|
|
// Finally, remove instruction from CPU
|
|
removeInst(inst);
|
|
}
|
|
|
|
// currently unused function, but substitute repetitive code w/this function
|
|
// call
|
|
void
|
|
InOrderCPU::addToRemoveList(DynInstPtr inst)
|
|
{
|
|
removeInstsThisCycle = true;
|
|
if (!inst->isRemoveList()) {
|
|
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
|
|
"[sn:%lli] to remove list\n",
|
|
inst->threadNumber, inst->pcState(), inst->seqNum);
|
|
inst->setRemoveList();
|
|
removeList.push(inst->getInstListIt());
|
|
} else {
|
|
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
|
|
"[sn:%lli], already remove list\n",
|
|
inst->threadNumber, inst->pcState(), inst->seqNum);
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
InOrderCPU::removeInst(DynInstPtr inst)
|
|
{
|
|
DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s "
|
|
"[sn:%lli]\n",
|
|
inst->threadNumber, inst->pcState(), inst->seqNum);
|
|
|
|
removeInstsThisCycle = true;
|
|
|
|
// Remove the instruction.
|
|
if (!inst->isRemoveList()) {
|
|
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
|
|
"[sn:%lli] to remove list\n",
|
|
inst->threadNumber, inst->pcState(), inst->seqNum);
|
|
inst->setRemoveList();
|
|
removeList.push(inst->getInstListIt());
|
|
} else {
|
|
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
|
|
"[sn:%lli], already on remove list\n",
|
|
inst->threadNumber, inst->pcState(), inst->seqNum);
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid)
|
|
{
|
|
//assert(!instList[tid].empty());
|
|
|
|
removeInstsThisCycle = true;
|
|
|
|
ListIt inst_iter = instList[tid].end();
|
|
|
|
inst_iter--;
|
|
|
|
DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction "
|
|
"list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
|
|
tid, seq_num, (*inst_iter)->seqNum);
|
|
|
|
while ((*inst_iter)->seqNum > seq_num) {
|
|
|
|
bool break_loop = (inst_iter == instList[tid].begin());
|
|
|
|
squashInstIt(inst_iter, tid);
|
|
|
|
inst_iter--;
|
|
|
|
if (break_loop)
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
inline void
|
|
InOrderCPU::squashInstIt(const ListIt inst_it, ThreadID tid)
|
|
{
|
|
DynInstPtr inst = (*inst_it);
|
|
if (inst->threadNumber == tid) {
|
|
DPRINTF(InOrderCPU, "Squashing instruction, "
|
|
"[tid:%i] [sn:%lli] PC %s\n",
|
|
inst->threadNumber,
|
|
inst->seqNum,
|
|
inst->pcState());
|
|
|
|
inst->setSquashed();
|
|
archRegDepMap[tid].remove(inst);
|
|
|
|
if (!inst->isRemoveList()) {
|
|
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
|
|
"[sn:%lli] to remove list\n",
|
|
inst->threadNumber, inst->pcState(),
|
|
inst->seqNum);
|
|
inst->setRemoveList();
|
|
removeList.push(inst_it);
|
|
} else {
|
|
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]"
|
|
" PC %s [sn:%lli], already on remove list\n",
|
|
inst->threadNumber, inst->pcState(),
|
|
inst->seqNum);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::cleanUpRemovedInsts()
|
|
{
|
|
while (!removeList.empty()) {
|
|
DPRINTF(InOrderCPU, "Removing instruction, "
|
|
"[tid:%i] [sn:%lli] PC %s\n",
|
|
(*removeList.front())->threadNumber,
|
|
(*removeList.front())->seqNum,
|
|
(*removeList.front())->pcState());
|
|
|
|
DynInstPtr inst = *removeList.front();
|
|
ThreadID tid = inst->threadNumber;
|
|
|
|
// Remove From Register Dependency Map, If Necessary
|
|
// archRegDepMap[tid].remove(inst);
|
|
|
|
// Clear if Non-Speculative
|
|
if (inst->staticInst &&
|
|
inst->seqNum == nonSpecSeqNum[tid] &&
|
|
nonSpecInstActive[tid] == true) {
|
|
nonSpecInstActive[tid] = false;
|
|
}
|
|
|
|
inst->onInstList = false;
|
|
|
|
instList[tid].erase(removeList.front());
|
|
|
|
removeList.pop();
|
|
}
|
|
|
|
removeInstsThisCycle = false;
|
|
}
|
|
|
|
void
|
|
InOrderCPU::cleanUpRemovedEvents()
|
|
{
|
|
while (!cpuEventRemoveList.empty()) {
|
|
Event *cpu_event = cpuEventRemoveList.front();
|
|
cpuEventRemoveList.pop();
|
|
delete cpu_event;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
InOrderCPU::dumpInsts()
|
|
{
|
|
int num = 0;
|
|
|
|
ListIt inst_list_it = instList[0].begin();
|
|
|
|
cprintf("Dumping Instruction List\n");
|
|
|
|
while (inst_list_it != instList[0].end()) {
|
|
cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
|
|
"Squashed:%i\n\n",
|
|
num, (*inst_list_it)->pcState(),
|
|
(*inst_list_it)->threadNumber,
|
|
(*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
|
|
(*inst_list_it)->isSquashed());
|
|
inst_list_it++;
|
|
++num;
|
|
}
|
|
}
|
|
|
|
void
|
|
InOrderCPU::wakeCPU()
|
|
{
|
|
if (/*activityRec.active() || */tickEvent.scheduled()) {
|
|
DPRINTF(Activity, "CPU already running.\n");
|
|
return;
|
|
}
|
|
|
|
DPRINTF(Activity, "Waking up CPU\n");
|
|
|
|
Tick extra_cycles = tickToCycles((curTick() - 1) - lastRunningCycle);
|
|
|
|
idleCycles += extra_cycles;
|
|
for (int stage_num = 0; stage_num < NumStages; stage_num++) {
|
|
pipelineStage[stage_num]->idleCycles += extra_cycles;
|
|
}
|
|
|
|
numCycles += extra_cycles;
|
|
|
|
schedule(&tickEvent, nextCycle(curTick()));
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
// Lots of copied full system code...place into BaseCPU class?
|
|
void
|
|
InOrderCPU::wakeup()
|
|
{
|
|
if (thread[0]->status() != ThreadContext::Suspended)
|
|
return;
|
|
|
|
wakeCPU();
|
|
|
|
DPRINTF(Quiesce, "Suspended Processor woken\n");
|
|
threadContexts[0]->activate();
|
|
}
|
|
#endif
|
|
|
|
#if !FULL_SYSTEM
|
|
void
|
|
InOrderCPU::syscallContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
|
|
{
|
|
// Syscall must be non-speculative, so squash from last stage
|
|
unsigned squash_stage = NumStages - 1;
|
|
inst->setSquashInfo(squash_stage);
|
|
|
|
// Squash In Pipeline Stage
|
|
pipelineStage[squash_stage]->setupSquash(inst, tid);
|
|
|
|
// Schedule Squash Through-out Resource Pool
|
|
resPool->scheduleEvent(
|
|
(InOrderCPU::CPUEventType)ResourcePool::SquashAll, inst, 0);
|
|
scheduleCpuEvent(Syscall, fault, tid, inst, delay, Syscall_Pri);
|
|
}
|
|
|
|
void
|
|
InOrderCPU::syscall(int64_t callnum, ThreadID tid)
|
|
{
|
|
DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid);
|
|
|
|
DPRINTF(Activity,"Activity: syscall() called.\n");
|
|
|
|
// Temporarily increase this by one to account for the syscall
|
|
// instruction.
|
|
++(this->thread[tid]->funcExeInst);
|
|
|
|
// Execute the actual syscall.
|
|
this->thread[tid]->syscall(callnum);
|
|
|
|
// Decrease funcExeInst by one as the normal commit will handle
|
|
// incrementing it.
|
|
--(this->thread[tid]->funcExeInst);
|
|
|
|
// Clear Non-Speculative Block Variable
|
|
nonSpecInstActive[tid] = false;
|
|
}
|
|
#endif
|
|
|
|
TheISA::TLB*
|
|
InOrderCPU::getITBPtr()
|
|
{
|
|
CacheUnit *itb_res =
|
|
dynamic_cast<CacheUnit*>(resPool->getResource(fetchPortIdx));
|
|
return itb_res->tlb();
|
|
}
|
|
|
|
|
|
TheISA::TLB*
|
|
InOrderCPU::getDTBPtr()
|
|
{
|
|
CacheUnit *dtb_res =
|
|
dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
|
|
return dtb_res->tlb();
|
|
}
|
|
|
|
Decoder *
|
|
InOrderCPU::getDecoderPtr()
|
|
{
|
|
FetchUnit *fetch_res =
|
|
dynamic_cast<FetchUnit*>(resPool->getResource(fetchPortIdx));
|
|
return &fetch_res->decoder;
|
|
}
|
|
|
|
Fault
|
|
InOrderCPU::read(DynInstPtr inst, Addr addr,
|
|
uint8_t *data, unsigned size, unsigned flags)
|
|
{
|
|
//@TODO: Generalize name "CacheUnit" to "MemUnit" just in case
|
|
// you want to run w/out caches?
|
|
CacheUnit *cache_res =
|
|
dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
|
|
|
|
return cache_res->read(inst, addr, data, size, flags);
|
|
}
|
|
|
|
Fault
|
|
InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size,
|
|
Addr addr, unsigned flags, uint64_t *write_res)
|
|
{
|
|
//@TODO: Generalize name "CacheUnit" to "MemUnit" just in case
|
|
// you want to run w/out caches?
|
|
CacheUnit *cache_res =
|
|
dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
|
|
return cache_res->write(inst, data, size, addr, flags, write_res);
|
|
}
|