gem5/src/mem/ruby/network/orion/OrionRouter.cc
2011-06-02 14:36:35 -07:00

496 lines
14 KiB
C++

/*
* Copyright (c) 2009 Princeton University
* Copyright (c) 2009 The Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Hangsheng Wang (Orion 1.0, Princeton)
* Xinping Zhu (Orion 1.0, Princeton)
* Xuning Chen (Orion 1.0, Princeton)
* Bin Li (Orion 2.0, Princeton)
* Kambiz Samadi (Orion 2.0, UC San Diego)
*/
#include <cassert>
#include "mem/ruby/network/orion/Allocator/SWAllocator.hh"
#include "mem/ruby/network/orion/Allocator/VCAllocator.hh"
#include "mem/ruby/network/orion/Buffer/Buffer.hh"
#include "mem/ruby/network/orion/Crossbar/Crossbar.hh"
#include "mem/ruby/network/orion/Clock.hh"
#include "mem/ruby/network/orion/OrionConfig.hh"
#include "OrionRouter.hh"
OrionRouter::OrionRouter(
uint32_t num_in_port_,
uint32_t num_out_port_,
uint32_t num_vclass_,
std::vector<uint32_t > vclass_type_ary_,
uint32_t num_vc_per_vclass_,
uint32_t in_buf_per_data_vc_,
uint32_t in_buf_per_ctrl_vc_,
uint32_t flit_width_,
OrionConfig* orion_cfg_ptr_
)
{
assert((num_in_port_ == num_in_port_) && (num_in_port_ != 0));
assert((num_out_port_ == num_out_port_) && (num_out_port_ != 0));
assert((num_vclass_ == num_vclass_) && (num_vclass_ != 0));
assert((num_vc_per_vclass_ == num_vc_per_vclass_) && (num_vc_per_vclass_ != 0));
assert(in_buf_per_data_vc_ != 0);
assert(in_buf_per_ctrl_vc_ != 0);
assert((flit_width_ == flit_width_) && (flit_width_ != 0));
orion_cfg_ptr_->set_num_in_port(num_in_port_);
orion_cfg_ptr_->set_num_out_port(num_out_port_);
orion_cfg_ptr_->set_num_vclass(num_vclass_);
orion_cfg_ptr_->set_flit_width(flit_width_);
m_orion_cfg_ptr = orion_cfg_ptr_;
m_num_in_port = m_orion_cfg_ptr->get<uint32_t>("NUM_INPUT_PORT");
m_num_out_port = m_orion_cfg_ptr->get<uint32_t>("NUM_OUTPUT_PORT");
m_flit_width = m_orion_cfg_ptr->get<uint32_t>("FLIT_WIDTH");
m_num_vclass = m_orion_cfg_ptr->get<uint32_t>("NUM_VIRTUAL_CLASS");
m_num_vc_per_vclass_ary = new uint32_t [m_num_vclass];
m_in_buf_num_set_ary = new uint32_t [m_num_vclass];
for (int i = 0; i < m_num_vclass; i++)
{
// can also suppport different vcs per vclass
m_num_vc_per_vclass_ary[i] = num_vc_per_vclass_;
if (vclass_type_ary_[i] == 0) // ctrl
m_in_buf_num_set_ary[i] = in_buf_per_ctrl_vc_;
else if (vclass_type_ary_[i] == 1) // data
m_in_buf_num_set_ary[i] = in_buf_per_data_vc_;
else
assert(0);
}
init();
}
OrionRouter::~OrionRouter()
{
delete[] m_num_vc_per_vclass_ary;
delete[] m_in_buf_num_set_ary;
if (m_in_buf_ary_ptr)
{
for (uint32_t i = 0; i < m_num_vclass; i++)
{
delete m_in_buf_ary_ptr[i];
}
delete[] m_in_buf_ary_ptr;
}
if (m_va_ary_ptr)
{
for (uint32_t i = 0; i < m_num_vclass; i++)
{
delete m_va_ary_ptr[i];
}
delete[] m_va_ary_ptr;
}
delete m_xbar_ptr;
delete m_sa_ptr;
delete m_clk_ptr;
}
double OrionRouter::calc_dynamic_energy_buf(uint32_t vclass_id_, bool is_read_, bool is_max_) const
{
assert(vclass_id_ < m_num_vclass);
if (m_in_buf_ary_ptr)
{
if (m_in_buf_ary_ptr[vclass_id_])
{
return m_in_buf_ary_ptr[vclass_id_]->get_dynamic_energy(is_read_, is_max_);
}
else
{
return 0;
}
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_xbar(bool is_max_) const
{
if (m_xbar_ptr)
{
return m_xbar_ptr->get_dynamic_energy(is_max_);
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_local_vc_arb(uint32_t vclass_id_, double num_req_, bool is_max_) const
{
assert(vclass_id_ < m_num_vclass);
if (m_va_ary_ptr)
{
if (m_va_ary_ptr[vclass_id_])
{
return m_va_ary_ptr[vclass_id_]->get_dynamic_energy_local_vc_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_global_vc_arb(uint32_t vclass_id_, double num_req_, bool is_max_) const
{
assert(vclass_id_ < m_num_vclass);
if (m_va_ary_ptr)
{
if (m_va_ary_ptr[vclass_id_])
{
return m_va_ary_ptr[vclass_id_]->get_dynamic_energy_global_vc_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
else
{
return 0;
}
}
//double OrionRouter::calc_dynamic_energy_vc_select(bool is_read_, bool is_max_) const
//{
// if (m_vc_select_ptr)
// {
// return m_vc_select_ptr->get_dynamic_energy_vc_select(is_read_, is_max_);
// }
// else
// {
// return 0;
// }
//}
double OrionRouter::calc_dynamic_energy_local_sw_arb(double num_req_, bool is_max_) const
{
if (m_sa_ptr)
{
return m_sa_ptr->get_dynamic_energy_local_sw_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_global_sw_arb(double num_req_, bool is_max_) const
{
if (m_sa_ptr)
{
return m_sa_ptr->get_dynamic_energy_global_sw_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_clock() const
{
if (m_clk_ptr)
{
return m_clk_ptr->get_dynamic_energy();
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_buf() const
{
if (m_in_buf_ary_ptr)
{
double total_static_power = 0;
for (uint32_t i = 0; i < m_num_vclass; i++)
{
uint32_t num_in_buf;
if (m_is_in_shared_buf)
{
num_in_buf = m_num_in_port;
}
else
{
num_in_buf = m_num_vc_per_vclass_ary[i]*m_num_in_port;
}
total_static_power += m_in_buf_ary_ptr[i]->get_static_power()*(double)num_in_buf;
}
return total_static_power;
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_xbar() const
{
if (m_xbar_ptr)
{
return m_xbar_ptr->get_static_power();
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_va() const
{
if (m_va_ary_ptr)
{
double total_static_power = 0;
for (uint32_t i = 0; i < m_num_vclass; i++)
{
total_static_power += m_va_ary_ptr[i]->get_static_power();
}
return total_static_power;
}
else
{
return 0;
}
}
//double OrionRouter::get_static_power_vc_select() const
//{
// if (m_vc_select_ptr)
// {
// return m_vc_select_ptr->get_static_power();
// }
// else
// {
// return 0;
// }
//}
double OrionRouter::get_static_power_sa() const
{
if (m_sa_ptr)
{
return m_sa_ptr->get_static_power();
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_clock() const
{
if (m_clk_ptr)
{
return m_clk_ptr->get_static_power();
}
else
{
return 0;
}
}
void OrionRouter::init()
{
m_total_num_vc = 0;
for (uint32_t i = 0; i < m_num_vclass; i++)
{
m_total_num_vc += m_num_vc_per_vclass_ary[i];
}
if (m_total_num_vc > 1)
{
m_is_in_shared_buf = m_orion_cfg_ptr->get<bool>("IS_IN_SHARED_BUFFER");
m_is_out_shared_buf = m_orion_cfg_ptr->get<bool>("IS_OUT_SHARED_BUFFER");
m_is_in_shared_switch = m_orion_cfg_ptr->get<bool>("IS_IN_SHARED_SWITCH");
m_is_out_shared_switch = m_orion_cfg_ptr->get<bool>("IS_OUT_SHARED_SWITCH");
}
else
{
m_is_in_shared_buf = false;
m_is_out_shared_buf = false;
m_is_in_shared_switch = false;
m_is_out_shared_switch = false;
}
//input buffer
bool is_in_buf = m_orion_cfg_ptr->get<bool>("IS_INPUT_BUFFER");
if (is_in_buf)
{
bool is_fifo = true;
bool is_outdrv = (!m_is_in_shared_buf) && (m_is_in_shared_switch);
const string& in_buf_model_str = m_orion_cfg_ptr->get<string>("IN_BUF_MODEL");
m_in_buf_ary_ptr = new Buffer* [m_num_vclass];
for (uint32_t i = 0; i < m_num_vclass; i++)
{
uint32_t in_buf_num_read_port = m_orion_cfg_ptr->get<uint32_t>("IN_BUF_NUM_READ_PORT");
uint32_t in_buf_num_set = m_in_buf_num_set_ary[i];
m_in_buf_ary_ptr[i] = new Buffer(in_buf_model_str, is_fifo, is_outdrv,
in_buf_num_set, m_flit_width, in_buf_num_read_port, 1, m_orion_cfg_ptr);
}
}
else
{
m_in_buf_ary_ptr = NULL;
}
bool is_out_buf = m_orion_cfg_ptr->get<bool>("IS_OUTPUT_BUFFER");
//crossbar
uint32_t num_switch_in;
if (is_in_buf)
{
if (m_is_in_shared_buf)
{
uint32_t in_buf_num_read_port = m_orion_cfg_ptr->get<uint32_t>("IN_BUF_NUM_READ_PORT");
num_switch_in = in_buf_num_read_port*m_num_in_port;
}
else if (m_is_in_shared_switch)
{
num_switch_in = 1*m_num_in_port;
}
else
{
num_switch_in = m_total_num_vc*m_num_in_port;
}
}
else
{
num_switch_in = 1*m_num_in_port;
}
uint32_t num_switch_out;
if (is_out_buf)
{
if (m_is_out_shared_buf)
{
uint32_t out_buf_num_write_port = m_orion_cfg_ptr->get<uint32_t>("OUT_BUF_NUM_WRITE_PORT");
num_switch_out = out_buf_num_write_port*m_num_out_port;
}
else if (m_is_out_shared_switch)
{
num_switch_out = 1*m_num_out_port;
}
else
{
num_switch_out = m_total_num_vc*m_num_out_port;
}
}
else
{
num_switch_out = 1*m_num_out_port;
}
const string& xbar_model_str = m_orion_cfg_ptr->get<string>("CROSSBAR_MODEL");
m_xbar_ptr = Crossbar::create_crossbar(xbar_model_str,
num_switch_in, num_switch_out, m_flit_width, m_orion_cfg_ptr);
//vc allocator
const string& va_model_str = m_orion_cfg_ptr->get<string>("VA_MODEL");
m_va_ary_ptr = new VCAllocator* [m_num_vclass];
//m_vc_select_ary_ptr = new VCAllocator* [m_num_vclass];
for (uint32_t i = 0; i < m_num_vclass; i++)
{
m_va_ary_ptr[i] = VCAllocator::create_vcallocator(va_model_str,
m_num_in_port, m_num_out_port, 1, m_num_vc_per_vclass_ary[i],
m_orion_cfg_ptr);
//m_vc_select_ary_ptr[i] = VCAllocator::create_vcallocator("VC_SELECT",
// m_num_in_port, m_num_out_port, 1, m_num_vc_per_vclass_ary[i], m_orion_cfg_ptr);
}
//sw allocator
m_sa_ptr = SWAllocator::create_swallocator(
m_num_in_port, m_num_out_port, 1, m_total_num_vc,
m_xbar_ptr, m_orion_cfg_ptr);
//cloc
m_clk_ptr = new Clock(is_in_buf, m_is_in_shared_switch, is_out_buf, m_is_out_shared_switch, m_orion_cfg_ptr);
return;
}
void OrionRouter::print() const
{
if (m_in_buf_ary_ptr)
{
for (uint32_t i = 0; i < m_num_vclass; i++)
{
cout << "VClass " << i << endl;
if (m_in_buf_ary_ptr[i]) m_in_buf_ary_ptr[i]->print_all();
}
}
m_xbar_ptr->print_all();
for (uint32_t i = 0; i < m_num_vclass; i++)
{
cout << "VClass " << i << endl;
m_va_ary_ptr[i]->print_all();
//m_vc_select_ary_ptr[i]->print_all();
}
m_sa_ptr->print_all();
//cout << "Router - Dynamic Energy" << endl;
//cout << "\t" << "Buffer Read = " << calc_dynamic_energy_buf(true) << endl;
//cout << "\t" << "Buffer Write = " << calc_dynamic_energy_buf(false) << endl;
//cout << "\t" << "Crossbar = " << calc_dynamic_energy_xbar() << endl;
//cout << "\t" << "Local VC Allocator(1) = " << calc_dynamic_energy_local_vc_arb(1) << endl;
//cout << "\t" << "Global VC Allocator(1) = " << calc_dynamic_energy_global_vc_arb(1) << endl;
//cout << "\t" << "VC Select Read = " << calc_dynamic_energy_vc_select(true) << endl;
//cout << "\t" << "VC Select Write = " << calc_dynamic_energy_vc_select(false) << endl;
//cout << "\t" << "Local SW Allocator(2) = " << calc_dynamic_energy_local_sw_arb(1) << endl;
//cout << "\t" << "Global SW Allocator(2) = " << calc_dynamic_energy_global_sw_arb(1) << endl;
//cout << "\t" << "Clock = " << calc_dynamic_energy_clock() << endl;
//cout << endl;
//cout << "Router - Static Power" << endl;
//cout << "\t" << "Buffer = " << get_static_power_buf() << endl;
//cout << "\t" << "Crossbar = " << get_static_power_xbar() << endl;
//cout << "\t" << "VC Allocator = " << get_static_power_va() << endl;
//cout << "\t" << "SW Allocator = " << get_static_power_sa() << endl;
//cout << "\t" << "Clock = " << get_static_power_clock() << endl;
//cout << endl;
return;
}