gem5/src/mem/ruby/network/orion/Buffer/SRAM.cc
2011-06-02 14:36:35 -07:00

272 lines
8.2 KiB
C++

/*
* Copyright (c) 2009 Princeton University
* Copyright (c) 2009 The Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Hangsheng Wang (Orion 1.0, Princeton)
* Xinping Zhu (Orion 1.0, Princeton)
* Xuning Chen (Orion 1.0, Princeton)
* Bin Li (Orion 2.0, Princeton)
* Kambiz Samadi (Orion 2.0, UC San Diego)
*/
#include <cassert>
#include <cmath>
#include <iostream>
#include "mem/ruby/network/orion/Buffer/AmpUnit.hh"
#include "mem/ruby/network/orion/Buffer/BitlineUnit.hh"
#include "mem/ruby/network/orion/Buffer/DecoderUnit.hh"
#include "mem/ruby/network/orion/Buffer/MemUnit.hh"
#include "mem/ruby/network/orion/Buffer/OutdrvUnit.hh"
#include "mem/ruby/network/orion/Buffer/PrechargeUnit.hh"
#include "mem/ruby/network/orion/Buffer/SRAM.hh"
#include "mem/ruby/network/orion/Buffer/WordlineUnit.hh"
using namespace std;
SRAM::SRAM(
uint32_t num_entry_,
uint32_t line_width_,
bool is_fifo_,
bool is_outdrv_,
uint32_t num_read_port_,
uint32_t num_write_port_,
uint32_t num_data_end_,
const string& rowdec_model_str_,
const string& wl_model_str_,
const string& bl_pre_model_str_,
const string& mem_model_str_,
const string& bl_model_str_,
const string& amp_model_str_,
const string& outdrv_model_str_,
const TechParameter* tech_param_ptr_
)
{
assert(num_entry_ == num_entry_);
assert(line_width_ == line_width_);
assert(num_read_port_ == num_read_port_);
assert(num_write_port_ == num_write_port_);
assert(num_data_end_ == num_data_end_);
m_num_entry = num_entry_;
m_line_width = line_width_;
m_is_fifo = is_fifo_;
m_is_outdrv = is_outdrv_;
m_num_read_port = num_read_port_;
m_num_write_port = num_write_port_;
m_num_data_end = num_data_end_;
m_rowdec_model_str = rowdec_model_str_;
m_wl_model_str = wl_model_str_;
m_bl_pre_model_str = bl_pre_model_str_;
m_mem_model_str = mem_model_str_;
m_bl_model_str = bl_model_str_;
m_amp_model_str = amp_model_str_;
m_outdrv_model_str = outdrv_model_str_;
m_tech_param_ptr = tech_param_ptr_;
init();
}
SRAM::~SRAM()
{
delete m_outdrv_unit_ptr;
delete m_amp_unit_ptr;
delete m_bl_unit_ptr;
delete m_mem_unit_ptr;
delete m_bl_pre_unit_ptr;
delete m_wl_unit_ptr;
delete m_rowdec_unit_ptr;
}
double SRAM::calc_e_read(
bool is_max_
) const
{
double e_atomic;
double e_read = 0;
// decoder
if (m_rowdec_unit_ptr != NULL)
{
e_atomic = m_rowdec_unit_ptr->get_e_chg_addr()*m_rowdec_unit_ptr->get_dec_width()*(is_max_? 1:0.5);
e_atomic += m_rowdec_unit_ptr->get_e_chg_output();
// assume all 1st-level decoders change output
e_atomic += m_rowdec_unit_ptr->get_e_chg_l1()*m_rowdec_unit_ptr->get_num_in_2nd();
e_read += e_atomic;
}
//wordline
e_atomic = m_wl_unit_ptr->get_e_read();
e_read += e_atomic;
//bitline pre
e_atomic = m_bl_pre_unit_ptr->get_e_charge_gate()*m_line_width;
if (m_num_data_end == 2)
{
e_atomic += m_bl_pre_unit_ptr->get_e_charge_drain()*m_line_width;
}
else
{
e_atomic += m_bl_pre_unit_ptr->get_e_charge_drain()*m_line_width*(is_max_? 1:0.5);
}
e_read += e_atomic;
//bitline
if (m_num_data_end == 2)
{
e_atomic = m_bl_unit_ptr->get_e_col_read()*m_line_width;
}
else
{
e_atomic = m_bl_unit_ptr->get_e_col_read()*m_line_width*(is_max_? 1:0.5);
}
e_read += e_atomic;
if (m_num_data_end == 2)
{
e_atomic = m_amp_unit_ptr->get_e_access()*m_line_width;
e_read += e_atomic;
}
if (m_outdrv_unit_ptr != NULL)
{
e_atomic = m_outdrv_unit_ptr->get_e_select();
e_atomic += m_outdrv_unit_ptr->get_e_chg_data()*m_line_width*(is_max_? 1:0.5);
//assume 1 and 0 are uniformly distributed
if ((m_outdrv_unit_ptr->get_e_out_1() >= m_outdrv_unit_ptr->get_e_out_0()) || (!is_max_))
{
e_atomic += m_outdrv_unit_ptr->get_e_out_1()*m_line_width*(is_max_? 1:0.5);
}
if ((m_outdrv_unit_ptr->get_e_out_1() < m_outdrv_unit_ptr->get_e_out_0()) || (!is_max_))
{
e_atomic += m_outdrv_unit_ptr->get_e_out_0()*m_line_width*(is_max_? 1:0.5);
}
e_read += e_atomic;
}
return e_read;
}
double SRAM::calc_e_write(
bool is_max_
) const
{
double e_atomic;
double e_write = 0;
// decoder
if (m_rowdec_unit_ptr != NULL)
{
e_atomic = m_rowdec_unit_ptr->get_e_chg_addr()*m_rowdec_unit_ptr->get_dec_width()*(is_max_? 1:0.5);
e_atomic += m_rowdec_unit_ptr->get_e_chg_output();
// assume all 1st-level decoders change output
e_atomic += m_rowdec_unit_ptr->get_e_chg_l1()*m_rowdec_unit_ptr->get_num_in_2nd();
e_write += e_atomic;
}
//wordline
e_atomic = m_wl_unit_ptr->get_e_write();
e_write += e_atomic;
//bitline
e_atomic = m_bl_unit_ptr->get_e_col_wrtie()*m_line_width*(is_max_? 1:0.5);
e_write += e_atomic;
//mem cell
e_atomic = m_mem_unit_ptr->get_e_switch()*m_line_width*(is_max_? 1:0.5);
e_write += e_atomic;
return e_write;
}
double SRAM::calc_i_static() const
{
double i_static = 0;
i_static += m_bl_unit_ptr->get_i_static()*m_line_width*m_num_write_port;
i_static += m_mem_unit_ptr->get_i_static()*m_num_entry*m_line_width;
i_static += m_bl_pre_unit_ptr->get_i_static()*m_line_width*m_num_read_port;
i_static += m_wl_unit_ptr->get_i_static()*m_num_entry*(m_num_read_port+m_num_write_port);
return i_static;
}
void SRAM::init()
{
// output driver unit
if (m_is_outdrv)
{
m_outdrv_unit_ptr = new OutdrvUnit(m_outdrv_model_str, this, m_tech_param_ptr);
}
else
{
m_outdrv_unit_ptr = NULL;
}
// sense amplifier unit
if (m_num_data_end == 2)
{
m_amp_unit_ptr = new AmpUnit(m_amp_model_str, m_tech_param_ptr);
}
else
{
m_amp_unit_ptr = NULL;
}
// bitline unit
m_bl_unit_ptr = new BitlineUnit(m_bl_model_str, this, m_tech_param_ptr);
// mem unit
m_mem_unit_ptr = new MemUnit(m_mem_model_str, this, m_tech_param_ptr);
// precharge unit
double bl_pre_unit_load = m_bl_unit_ptr->get_pre_unit_load();
m_bl_pre_unit_ptr = new PrechargeUnit(m_bl_pre_model_str, bl_pre_unit_load, this, m_tech_param_ptr);
// wordline unit
m_wl_unit_ptr = new WordlineUnit(m_wl_model_str, this, m_tech_param_ptr);
// decode unit
if (!m_is_fifo)
{
m_rowdec_width = (uint32_t)log2((double)m_num_entry);
m_rowdec_unit_ptr = new DecoderUnit(m_rowdec_model_str, m_rowdec_width, m_tech_param_ptr);
}
else
{
m_rowdec_unit_ptr = NULL;
}
return;
}