gem5/src/mem/ruby/network/orion/Buffer/DecoderUnit.cc
2011-06-02 14:36:35 -07:00

172 lines
6.2 KiB
C++

/*
* Copyright (c) 2009 Princeton University
* Copyright (c) 2009 The Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Hangsheng Wang (Orion 1.0, Princeton)
* Xinping Zhu (Orion 1.0, Princeton)
* Xuning Chen (Orion 1.0, Princeton)
* Bin Li (Orion 2.0, Princeton)
* Kambiz Samadi (Orion 2.0, UC San Diego)
*/
#include <cmath>
#include "mem/ruby/network/orion/Buffer/DecoderUnit.hh"
#include "mem/ruby/network/orion/TechParameter.hh"
using namespace std;
DecoderUnit::DecoderUnit(
const string& dec_model_str_,
uint32_t dec_width_,
const TechParameter* tech_param_ptr_
)
{
if (dec_model_str_.compare("GENERIC_DEC") == 0)
{
m_dec_model = GENERIC_DEC;
}
else
{
m_dec_model = NO_MODEL;
}
if (m_dec_model != NO_MODEL)
{
m_dec_width = dec_width_;
m_tech_param_ptr = tech_param_ptr_;
init();
}
}
DecoderUnit::~DecoderUnit()
{
}
void DecoderUnit::init()
{
if (m_dec_width >= 4)
{ // 2-level decoder
m_num_in_1st = (m_dec_width == 4)? 2:3;
m_num_out_0th = 1 << (m_num_in_1st - 1);
m_num_in_2nd = (uint32_t)ceil((double)m_dec_width/(double)m_num_in_1st);
m_num_out_1st = 1 << (m_dec_width - m_num_in_1st);
}
else if (m_dec_width >= 2)
{ // 1-level decoder
m_num_in_1st = m_dec_width;
m_num_out_0th = 1 << (m_num_in_1st - 1);
m_num_in_2nd = m_num_out_1st = 0;
}
else
{
m_num_in_1st = m_num_out_0th = m_num_in_2nd = m_num_out_1st = 0;
}
// compute energy constants
double e_factor = m_tech_param_ptr->get_vdd() * m_tech_param_ptr->get_vdd();
if (m_dec_width >= 4)
{
m_e_chg_l1 = calc_chgl1_cap() * e_factor;
m_e_chg_output = calc_select_cap() * e_factor;
}
else if (m_dec_width >= 2)
{
m_e_chg_l1 = calc_chgl1_cap() * e_factor;
m_e_chg_output = 0;
}
else
{
m_e_chg_l1 = m_e_chg_output = 0;
}
m_e_chg_addr = calc_chgaddr_cap() * e_factor;
return;
}
double DecoderUnit::calc_chgl1_cap()
{
double total_cap;
// part 1: drain cap of level-1 decoder
double Wdec3to8p = m_tech_param_ptr->get_Wdec3to8p();
double Wdec3to8n = m_tech_param_ptr->get_Wdec3to8n();
total_cap = m_num_in_1st * m_tech_param_ptr->calc_draincap(Wdec3to8p, TechParameter::PCH, 1) + m_tech_param_ptr->calc_draincap(Wdec3to8n, TechParameter::NCH, m_num_in_1st);
/* part 2: gate cap of level-2 decoder */
/* WHS: 40 and 20 should go to PARM */
double WdecNORn = m_tech_param_ptr->get_WdecNORn();
double WdecNORp = m_tech_param_ptr->get_WdecNORp();
total_cap += m_num_out_0th*m_tech_param_ptr->calc_gatecap((WdecNORn+WdecNORp), m_num_in_2nd*40 + 20);
return total_cap;
}
double DecoderUnit::calc_select_cap()
{
double total_cap;
// part 1: drain cap of last level decoders
double WdecNORp = m_tech_param_ptr->get_WdecNORp();
double WdecNORn = m_tech_param_ptr->get_WdecNORn();
total_cap = m_num_in_2nd * m_tech_param_ptr->calc_draincap(WdecNORn, TechParameter::NCH, 1) + m_tech_param_ptr->calc_draincap(WdecNORp, TechParameter::PCH, m_num_in_2nd);
// part 2: output inverter
// WHS: 20 should go to PARM
double Wdecinvp = m_tech_param_ptr->get_Wdecinvp();
double Wdecinvn = m_tech_param_ptr->get_Wdecinvn();
total_cap += m_tech_param_ptr->calc_draincap(Wdecinvn, TechParameter::NCH, 1) + m_tech_param_ptr->calc_draincap(Wdecinvp, TechParameter::PCH, 1) + m_tech_param_ptr->calc_gatecap(Wdecinvn + Wdecinvp, 20);
return total_cap;
}
double DecoderUnit::calc_chgaddr_cap()
{
double total_cap;
// stage 1: input driver
double Wdecdrivep = m_tech_param_ptr->get_Wdecdrivep();
double Wdecdriven = m_tech_param_ptr->get_Wdecdriven();
total_cap = m_tech_param_ptr->calc_draincap(Wdecdrivep, TechParameter::PCH, 1) + m_tech_param_ptr->calc_draincap(Wdecdriven, TechParameter::NCH, 1) + m_tech_param_ptr->calc_gatecap(Wdecdriven, 1);
/* inverter to produce complement addr, this needs 1/2 */
/* WHS: assume Wdecinv(np) for this inverter */
double Wdecinvp = m_tech_param_ptr->get_Wdecinvp();
double Wdecinvn = m_tech_param_ptr->get_Wdecinvn();
total_cap += (m_tech_param_ptr->calc_draincap(Wdecinvp, TechParameter::PCH, 1) + m_tech_param_ptr->calc_draincap(Wdecinvn, TechParameter::NCH, 1) + m_tech_param_ptr->calc_gatecap(Wdecinvp, 1) + m_tech_param_ptr->calc_gatecap(Wdecinvn, 1)) / 2;
/* stage 2: gate cap of level-1 decoder */
/* WHS: 10 should go to PARM */
double Wdec3to8p = m_tech_param_ptr->get_Wdec3to8p();
double Wdec3to8n = m_tech_param_ptr->get_Wdec3to8n();
total_cap += m_num_out_0th*m_tech_param_ptr->calc_gatecap( Wdec3to8n + Wdec3to8p, 10 );
return total_cap;
}