gem5/src/base/remote_gdb.cc
2008-09-19 09:11:42 -07:00

1025 lines
28 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
*/
/*
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratories.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kgdb_stub.c 8.4 (Berkeley) 1/12/94
*/
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $NetBSD: kgdb_stub.c,v 1.8 2001/07/07 22:58:00 wdk Exp $
*
* Taken from NetBSD
*
* "Stub" to allow remote cpu to debug over a serial line using gdb.
*/
#include <sys/signal.h>
#include <string>
#include <unistd.h>
#include "config/full_system.hh"
#if FULL_SYSTEM
#include "arch/vtophys.hh"
#endif
#include "base/intmath.hh"
#include "base/remote_gdb.hh"
#include "base/socket.hh"
#include "base/trace.hh"
#include "cpu/thread_context.hh"
#include "cpu/static_inst.hh"
//#include "mem/physical.hh"
#include "mem/port.hh"
#include "mem/translating_port.hh"
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
#ifndef NDEBUG
vector<BaseRemoteGDB *> debuggers;
void
debugger()
{
static int current_debugger = -1;
if (current_debugger >= 0 && current_debugger < debuggers.size()) {
BaseRemoteGDB *gdb = debuggers[current_debugger];
if (!gdb->isattached())
gdb->listener->accept();
if (gdb->isattached())
gdb->trap(SIGILL);
}
}
#endif
///////////////////////////////////////////////////////////
//
//
//
GDBListener::Event::Event(GDBListener *l, int fd, int e)
: PollEvent(fd, e), listener(l)
{}
void
GDBListener::Event::process(int revent)
{
listener->accept();
}
GDBListener::GDBListener(BaseRemoteGDB *g, int p)
: event(NULL), gdb(g), port(p)
{
assert(!gdb->listener);
gdb->listener = this;
}
GDBListener::~GDBListener()
{
if (event)
delete event;
}
string
GDBListener::name()
{
return gdb->name() + ".listener";
}
void
GDBListener::listen()
{
if (ListenSocket::allDisabled()) {
warn_once("Sockets disabled, not accepting gdb connections");
return;
}
while (!listener.listen(port, true)) {
DPRINTF(GDBMisc, "Can't bind port %d\n", port);
port++;
}
event = new Event(this, listener.getfd(), POLLIN);
pollQueue.schedule(event);
#ifndef NDEBUG
gdb->number = debuggers.size();
debuggers.push_back(gdb);
#endif
#ifndef NDEBUG
ccprintf(cerr, "%d: %s: listening for remote gdb #%d on port %d\n",
curTick, name(), gdb->number, port);
#else
ccprintf(cerr, "%d: %s: listening for remote gdb on port %d\n",
curTick, name(), port);
#endif
}
void
GDBListener::accept()
{
if (!listener.islistening())
panic("GDBListener::accept(): cannot accept if we're not listening!");
int sfd = listener.accept(true);
if (sfd != -1) {
if (gdb->isattached())
close(sfd);
else
gdb->attach(sfd);
}
}
BaseRemoteGDB::Event::Event(BaseRemoteGDB *g, int fd, int e)
: PollEvent(fd, e), gdb(g)
{}
void
BaseRemoteGDB::Event::process(int revent)
{
if (revent & POLLIN)
gdb->trap(SIGILL);
else if (revent & POLLNVAL)
gdb->detach();
}
BaseRemoteGDB::BaseRemoteGDB(System *_system, ThreadContext *c, size_t cacheSize)
: event(NULL), listener(NULL), number(-1), fd(-1),
active(false), attached(false),
system(_system), pmem(_system->physmem), context(c),
gdbregs(cacheSize)
{
memset(gdbregs.regs, 0, gdbregs.bytes());
}
BaseRemoteGDB::~BaseRemoteGDB()
{
if (event)
delete event;
}
string
BaseRemoteGDB::name()
{
return system->name() + ".remote_gdb";
}
bool
BaseRemoteGDB::isattached()
{ return attached; }
void
BaseRemoteGDB::attach(int f)
{
fd = f;
event = new Event(this, fd, POLLIN);
pollQueue.schedule(event);
attached = true;
DPRINTFN("remote gdb attached\n");
}
void
BaseRemoteGDB::detach()
{
attached = false;
close(fd);
fd = -1;
pollQueue.remove(event);
DPRINTFN("remote gdb detached\n");
}
const char *
BaseRemoteGDB::gdb_command(char cmd)
{
switch (cmd) {
case GDBSignal: return "KGDB_SIGNAL";
case GDBSetBaud: return "KGDB_SET_BAUD";
case GDBSetBreak: return "KGDB_SET_BREAK";
case GDBCont: return "KGDB_CONT";
case GDBAsyncCont: return "KGDB_ASYNC_CONT";
case GDBDebug: return "KGDB_DEBUG";
case GDBDetach: return "KGDB_DETACH";
case GDBRegR: return "KGDB_REG_R";
case GDBRegW: return "KGDB_REG_W";
case GDBSetThread: return "KGDB_SET_THREAD";
case GDBCycleStep: return "KGDB_CYCLE_STEP";
case GDBSigCycleStep: return "KGDB_SIG_CYCLE_STEP";
case GDBKill: return "KGDB_KILL";
case GDBMemW: return "KGDB_MEM_W";
case GDBMemR: return "KGDB_MEM_R";
case GDBSetReg: return "KGDB_SET_REG";
case GDBReadReg: return "KGDB_READ_REG";
case GDBQueryVar: return "KGDB_QUERY_VAR";
case GDBSetVar: return "KGDB_SET_VAR";
case GDBReset: return "KGDB_RESET";
case GDBStep: return "KGDB_STEP";
case GDBAsyncStep: return "KGDB_ASYNC_STEP";
case GDBThreadAlive: return "KGDB_THREAD_ALIVE";
case GDBTargetExit: return "KGDB_TARGET_EXIT";
case GDBBinaryDload: return "KGDB_BINARY_DLOAD";
case GDBClrHwBkpt: return "KGDB_CLR_HW_BKPT";
case GDBSetHwBkpt: return "KGDB_SET_HW_BKPT";
case GDBStart: return "KGDB_START";
case GDBEnd: return "KGDB_END";
case GDBGoodP: return "KGDB_GOODP";
case GDBBadP: return "KGDB_BADP";
default: return "KGDB_UNKNOWN";
}
}
/////////////////////////
//
//
uint8_t
BaseRemoteGDB::getbyte()
{
uint8_t b;
if (::read(fd, &b, 1) != 1)
warn("could not read byte from debugger");
return b;
}
void
BaseRemoteGDB::putbyte(uint8_t b)
{
if (::write(fd, &b, 1) != 1)
warn("could not write byte to debugger");
}
// Send a packet to gdb
void
BaseRemoteGDB::send(const char *bp)
{
const char *p;
uint8_t csum, c;
DPRINTF(GDBSend, "send: %s\n", bp);
do {
p = bp;
//Start sending a packet
putbyte(GDBStart);
//Send the contents, and also keep a check sum.
for (csum = 0; (c = *p); p++) {
putbyte(c);
csum += c;
}
//Send the ending character.
putbyte(GDBEnd);
//Sent the checksum.
putbyte(i2digit(csum >> 4));
putbyte(i2digit(csum));
//Try transmitting over and over again until the other end doesn't send an
//error back.
} while ((c = getbyte() & 0x7f) == GDBBadP);
}
// Receive a packet from gdb
int
BaseRemoteGDB::recv(char *bp, int maxlen)
{
char *p;
int c, csum;
int len;
do {
p = bp;
csum = len = 0;
//Find the beginning of a packet
while ((c = getbyte()) != GDBStart)
;
//Read until you find the end of the data in the packet, and keep
//track of the check sum.
while ((c = getbyte()) != GDBEnd && len < maxlen) {
c &= 0x7f;
csum += c;
*p++ = c;
len++;
}
//Mask the check sum, and terminate the command string.
csum &= 0xff;
*p = '\0';
//If the command was too long, report an error.
if (len >= maxlen) {
putbyte(GDBBadP);
continue;
}
//Bring in the checksum. If the check sum matches, csum will be 0.
csum -= digit2i(getbyte()) * 16;
csum -= digit2i(getbyte());
//If the check sum was correct
if (csum == 0) {
//Report that the packet was received correctly
putbyte(GDBGoodP);
// Sequence present?
if (bp[2] == ':') {
putbyte(bp[0]);
putbyte(bp[1]);
len -= 3;
memcpy(bp, bp+3, len);
}
break;
}
//Otherwise, report that there was a mistake.
putbyte(GDBBadP);
} while (1);
DPRINTF(GDBRecv, "recv: %s: %s\n", gdb_command(*bp), bp);
return (len);
}
// Read bytes from kernel address space for debugger.
bool
BaseRemoteGDB::read(Addr vaddr, size_t size, char *data)
{
static Addr lastaddr = 0;
static size_t lastsize = 0;
if (vaddr < 10) {
DPRINTF(GDBRead, "read: reading memory location zero!\n");
vaddr = lastaddr + lastsize;
}
DPRINTF(GDBRead, "read: addr=%#x, size=%d", vaddr, size);
#if FULL_SYSTEM
VirtualPort *port = context->getVirtPort();
#else
TranslatingPort *port = context->getMemPort();
#endif
port->readBlob(vaddr, (uint8_t*)data, size);
#if TRACING_ON
if (DTRACE(GDBRead)) {
if (DTRACE(GDBExtra)) {
char buf[1024];
mem2hex(buf, data, size);
DPRINTFNR(": %s\n", buf);
} else
DPRINTFNR("\n");
}
#endif
return true;
}
// Write bytes to kernel address space for debugger.
bool
BaseRemoteGDB::write(Addr vaddr, size_t size, const char *data)
{
static Addr lastaddr = 0;
static size_t lastsize = 0;
if (vaddr < 10) {
DPRINTF(GDBWrite, "write: writing memory location zero!\n");
vaddr = lastaddr + lastsize;
}
if (DTRACE(GDBWrite)) {
DPRINTFN("write: addr=%#x, size=%d", vaddr, size);
if (DTRACE(GDBExtra)) {
char buf[1024];
mem2hex(buf, data, size);
DPRINTFNR(": %s\n", buf);
} else
DPRINTFNR("\n");
}
#if FULL_SYSTEM
VirtualPort *port = context->getVirtPort();
#else
TranslatingPort *port = context->getMemPort();
#endif
port->writeBlob(vaddr, (uint8_t*)data, size);
#if !FULL_SYSTEM
delete port;
#endif
return true;
}
PCEventQueue *BaseRemoteGDB::getPcEventQueue()
{
return &system->pcEventQueue;
}
BaseRemoteGDB::HardBreakpoint::HardBreakpoint(BaseRemoteGDB *_gdb, Addr pc)
: PCEvent(_gdb->getPcEventQueue(), "HardBreakpoint Event", pc),
gdb(_gdb), refcount(0)
{
DPRINTF(GDBMisc, "creating hardware breakpoint at %#x\n", evpc);
}
void
BaseRemoteGDB::HardBreakpoint::process(ThreadContext *tc)
{
DPRINTF(GDBMisc, "handling hardware breakpoint at %#x\n", pc());
if (tc == gdb->context)
gdb->trap(SIGTRAP);
}
bool
BaseRemoteGDB::insertSoftBreak(Addr addr, size_t len)
{
if (len != sizeof(TheISA::MachInst))
panic("invalid length\n");
return insertHardBreak(addr, len);
}
bool
BaseRemoteGDB::removeSoftBreak(Addr addr, size_t len)
{
if (len != sizeof(MachInst))
panic("invalid length\n");
return removeHardBreak(addr, len);
}
bool
BaseRemoteGDB::insertHardBreak(Addr addr, size_t len)
{
if (len != sizeof(MachInst))
panic("invalid length\n");
DPRINTF(GDBMisc, "inserting hardware breakpoint at %#x\n", addr);
HardBreakpoint *&bkpt = hardBreakMap[addr];
if (bkpt == 0)
bkpt = new HardBreakpoint(this, addr);
bkpt->refcount++;
return true;
}
bool
BaseRemoteGDB::removeHardBreak(Addr addr, size_t len)
{
if (len != sizeof(MachInst))
panic("invalid length\n");
DPRINTF(GDBMisc, "removing hardware breakpoint at %#x\n", addr);
break_iter_t i = hardBreakMap.find(addr);
if (i == hardBreakMap.end())
return false;
HardBreakpoint *hbp = (*i).second;
if (--hbp->refcount == 0) {
delete hbp;
hardBreakMap.erase(i);
}
return true;
}
void
BaseRemoteGDB::setTempBreakpoint(Addr bkpt)
{
DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n", bkpt);
insertHardBreak(bkpt, sizeof(TheISA::MachInst));
}
void
BaseRemoteGDB::clearTempBreakpoint(Addr &bkpt)
{
DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n", bkpt);
removeHardBreak(bkpt, sizeof(TheISA::MachInst));
bkpt = 0;
}
const char *
BaseRemoteGDB::break_type(char c)
{
switch(c) {
case '0': return "software breakpoint";
case '1': return "hardware breakpoint";
case '2': return "write watchpoint";
case '3': return "read watchpoint";
case '4': return "access watchpoint";
default: return "unknown breakpoint/watchpoint";
}
}
// This function does all command processing for interfacing to a
// remote gdb. Note that the error codes are ignored by gdb at
// present, but might eventually become meaningful. (XXX) It might
// makes sense to use POSIX errno values, because that is what the
// gdb/remote.c functions want to return.
bool
BaseRemoteGDB::trap(int type)
{
uint64_t val;
size_t datalen, len;
char data[GDBPacketBufLen + 1];
char *buffer;
int bufferSize;
const char *p;
char command, subcmd;
string var;
bool ret;
if (!attached)
return false;
bufferSize = gdbregs.bytes() * 2 + 256;
buffer = (char*)malloc(bufferSize);
DPRINTF(GDBMisc, "trap: PC=%#x NPC=%#x\n",
context->readPC(), context->readNextPC());
clearSingleStep();
/*
* The first entry to this function is normally through
* a breakpoint trap in kgdb_connect(), in which case we
* must advance past the breakpoint because gdb will not.
*
* On the first entry here, we expect that gdb is not yet
* listening to us, so just enter the interaction loop.
* After the debugger is "active" (connected) it will be
* waiting for a "signaled" message from us.
*/
if (!active)
active = true;
else
// Tell remote host that an exception has occurred.
snprintf((char *)buffer, bufferSize, "S%02x", type);
send(buffer);
// Stick frame regs into our reg cache.
getregs();
for (;;) {
datalen = recv(data, sizeof(data));
data[sizeof(data) - 1] = 0; // Sentinel
command = data[0];
subcmd = 0;
p = data + 1;
switch (command) {
case GDBSignal:
// if this command came from a running gdb, answer it --
// the other guy has no way of knowing if we're in or out
// of this loop when he issues a "remote-signal".
snprintf((char *)buffer, bufferSize,
"S%02x", type);
send(buffer);
continue;
case GDBRegR:
if (2 * gdbregs.bytes() > bufferSize)
panic("buffer too small");
mem2hex(buffer, gdbregs.regs, gdbregs.bytes());
send(buffer);
continue;
case GDBRegW:
p = hex2mem(gdbregs.regs, p, gdbregs.bytes());
if (p == NULL || *p != '\0')
send("E01");
else {
setregs();
send("OK");
}
continue;
#if 0
case GDBSetReg:
val = hex2i(&p);
if (*p++ != '=') {
send("E01");
continue;
}
if (val < 0 && val >= KGDB_NUMREGS) {
send("E01");
continue;
}
gdbregs.regs[val] = hex2i(&p);
setregs();
send("OK");
continue;
#endif
case GDBMemR:
val = hex2i(&p);
if (*p++ != ',') {
send("E02");
continue;
}
len = hex2i(&p);
if (*p != '\0') {
send("E03");
continue;
}
if (len > bufferSize) {
send("E04");
continue;
}
if (!acc(val, len)) {
send("E05");
continue;
}
if (read(val, (size_t)len, (char *)buffer)) {
// variable length array would be nice, but C++ doesn't
// officially support those...
char *temp = new char[2*len+1];
mem2hex(temp, buffer, len);
send(temp);
delete [] temp;
} else {
send("E05");
}
continue;
case GDBMemW:
val = hex2i(&p);
if (*p++ != ',') {
send("E06");
continue;
}
len = hex2i(&p);
if (*p++ != ':') {
send("E07");
continue;
}
if (len > datalen - (p - data)) {
send("E08");
continue;
}
p = hex2mem(buffer, p, bufferSize);
if (p == NULL) {
send("E09");
continue;
}
if (!acc(val, len)) {
send("E0A");
continue;
}
if (write(val, (size_t)len, (char *)buffer))
send("OK");
else
send("E0B");
continue;
case GDBSetThread:
subcmd = *p++;
val = hex2i(&p);
if (val == 0)
send("OK");
else
send("E01");
continue;
case GDBDetach:
case GDBKill:
active = false;
clearSingleStep();
detach();
goto out;
case GDBAsyncCont:
subcmd = hex2i(&p);
if (*p++ == ';') {
val = hex2i(&p);
context->setPC(val);
context->setNextPC(val + sizeof(MachInst));
}
clearSingleStep();
goto out;
case GDBCont:
if (p - data < datalen) {
val = hex2i(&p);
context->setPC(val);
context->setNextPC(val + sizeof(MachInst));
}
clearSingleStep();
goto out;
case GDBAsyncStep:
subcmd = hex2i(&p);
if (*p++ == ';') {
val = hex2i(&p);
context->setPC(val);
context->setNextPC(val + sizeof(MachInst));
}
setSingleStep();
goto out;
case GDBStep:
if (p - data < datalen) {
val = hex2i(&p);
context->setPC(val);
context->setNextPC(val + sizeof(MachInst));
}
setSingleStep();
goto out;
case GDBClrHwBkpt:
subcmd = *p++;
if (*p++ != ',') send("E0D");
val = hex2i(&p);
if (*p++ != ',') send("E0D");
len = hex2i(&p);
DPRINTF(GDBMisc, "clear %s, addr=%#x, len=%d\n",
break_type(subcmd), val, len);
ret = false;
switch (subcmd) {
case '0': // software breakpoint
ret = removeSoftBreak(val, len);
break;
case '1': // hardware breakpoint
ret = removeHardBreak(val, len);
break;
case '2': // write watchpoint
case '3': // read watchpoint
case '4': // access watchpoint
default: // unknown
send("");
break;
}
send(ret ? "OK" : "E0C");
continue;
case GDBSetHwBkpt:
subcmd = *p++;
if (*p++ != ',') send("E0D");
val = hex2i(&p);
if (*p++ != ',') send("E0D");
len = hex2i(&p);
DPRINTF(GDBMisc, "set %s, addr=%#x, len=%d\n",
break_type(subcmd), val, len);
ret = false;
switch (subcmd) {
case '0': // software breakpoint
ret = insertSoftBreak(val, len);
break;
case '1': // hardware breakpoint
ret = insertHardBreak(val, len);
break;
case '2': // write watchpoint
case '3': // read watchpoint
case '4': // access watchpoint
default: // unknown
send("");
break;
}
send(ret ? "OK" : "E0C");
continue;
case GDBQueryVar:
var = string(p, datalen - 1);
if (var == "C")
send("QC0");
else
send("");
continue;
case GDBSetBaud:
case GDBSetBreak:
case GDBDebug:
case GDBCycleStep:
case GDBSigCycleStep:
case GDBReadReg:
case GDBSetVar:
case GDBReset:
case GDBThreadAlive:
case GDBTargetExit:
case GDBBinaryDload:
// Unsupported command
DPRINTF(GDBMisc, "Unsupported command: %s\n",
gdb_command(command));
DDUMP(GDBMisc, (uint8_t *)data, datalen);
send("");
continue;
default:
// Unknown command.
DPRINTF(GDBMisc, "Unknown command: %c(%#x)\n",
command, command);
send("");
continue;
}
}
out:
free(buffer);
return true;
}
// Convert a hex digit into an integer.
// This returns -1 if the argument passed is no valid hex digit.
int
BaseRemoteGDB::digit2i(char c)
{
if (c >= '0' && c <= '9')
return (c - '0');
else if (c >= 'a' && c <= 'f')
return (c - 'a' + 10);
else if (c >= 'A' && c <= 'F')
return (c - 'A' + 10);
else
return (-1);
}
// Convert the low 4 bits of an integer into an hex digit.
char
BaseRemoteGDB::i2digit(int n)
{
return ("0123456789abcdef"[n & 0x0f]);
}
// Convert a byte array into an hex string.
void
BaseRemoteGDB::mem2hex(void *vdst, const void *vsrc, int len)
{
char *dst = (char *)vdst;
const char *src = (const char *)vsrc;
while (len--) {
*dst++ = i2digit(*src >> 4);
*dst++ = i2digit(*src++);
}
*dst = '\0';
}
// Convert an hex string into a byte array.
// This returns a pointer to the character following the last valid
// hex digit. If the string ends in the middle of a byte, NULL is
// returned.
const char *
BaseRemoteGDB::hex2mem(void *vdst, const char *src, int maxlen)
{
char *dst = (char *)vdst;
int msb, lsb;
while (*src && maxlen--) {
msb = digit2i(*src++);
if (msb < 0)
return (src - 1);
lsb = digit2i(*src++);
if (lsb < 0)
return (NULL);
*dst++ = (msb << 4) | lsb;
}
return (src);
}
// Convert an hex string into an integer.
// This returns a pointer to the character following the last valid
// hex digit.
Addr
BaseRemoteGDB::hex2i(const char **srcp)
{
const char *src = *srcp;
Addr r = 0;
int nibble;
while ((nibble = digit2i(*src)) >= 0) {
r *= 16;
r += nibble;
src++;
}
*srcp = src;
return (r);
}