gem5/base/statistics.cc
Nathan Binkert c9f2aa8c18 Make each stat take up one full line. This allows us to use grep
to find and remove stats from the files so we can put less
burden on the python interpreter.

base/statistics.cc:
    Manually insert newlines into the python code so that we now have one
    stat per line.  (Make it so we can use grep -v to remove stats)
test/stattest.cc:
    update to reflect changes in how python is accessed

--HG--
extra : convert_revision : 554edcf9c795b33d00d3d15554447c8accebebfa
2004-01-15 16:33:58 -05:00

1320 lines
29 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iomanip>
#include <fstream>
#include <list>
#include <map>
#include <string>
#include <sstream>
#include "base/callback.hh"
#include "base/cprintf.hh"
#include "base/hostinfo.hh"
#include "base/misc.hh"
#include "base/python.hh"
#include "base/statistics.hh"
#include "base/str.hh"
#include "base/time.hh"
#include "base/trace.hh"
#ifdef __M5_NAN
float
__nan()
{
union {
uint32_t ui;
float f;
} nan;
nan.ui = 0x7fc00000;
return nan.f;
}
#endif
#ifdef STAT_DEBUG
static int total_stats = 0;
#endif
using namespace std;
// This is a hack to get this parameter from the old stats package.
namespace Statistics {
bool PrintDescriptions = true;
DisplayMode DefaultMode = mode_simplescalar;
namespace Database
{
class Data
{
private:
typedef list<StatData *> list_t;
typedef map<void *, StatData *> map_t;
list<MainBin *> bins;
list_t allStats;
list_t printStats;
map_t statMap;
ofstream *stream;
Python *py;
public:
Data();
~Data();
void dump(ostream &stream, DisplayMode mode);
void display(ostream &stream, DisplayMode mode);
void python_start(const string &file);
void python_dump(const string &name, const string &subname);
void python(const string &name, const string &subname,
const string &bin);
StatData *find(void *stat);
void mapStat(void *stat, StatData *data);
void check();
void reset();
void regBin(MainBin *bin, string name);
void regPrint(void *stat);
static std::string name() { return "Statistics Database"; }
};
Data::Data()
: stream(0), py(0)
{
}
Data::~Data()
{
if (stream) {
delete py;
ccprintf(*stream, "\n\nif __name__ == '__main__':\n");
ccprintf(*stream, " program_display()\n");
stream->close();
delete stream;
}
}
void
Data::dump(ostream &stream, DisplayMode mode)
{
MainBin *orig = MainBin::curBin();
switch (mode) {
case mode_m5:
case mode_simplescalar:
display(stream, mode);
break;
default:
warn("invalid display mode!\n");
display(stream, mode_m5);
break;
}
if (orig)
orig->activate();
}
void
Data::display(ostream &stream, DisplayMode mode)
{
if (!bins.empty()) {
list<MainBin *>::iterator i = bins.begin();
list<MainBin *>::iterator bins_end = bins.end();
ccprintf(stream, "PRINTING BINNED STATS\n");
while (i != bins_end) {
(*i)->activate();
ccprintf(stream,"---%s Bin------------\n", (*i)->name());
list_t::iterator j = printStats.begin();
list_t::iterator end = printStats.end();
while (j != end) {
StatData *stat = *j;
if (stat->dodisplay())
stat->display(stream, mode);
++j;
}
++i;
ccprintf(stream, "---------------------------------\n");
}
} else {
list_t::iterator i = printStats.begin();
list_t::iterator end = printStats.end();
while (i != end) {
StatData *stat = *i;
if (stat->dodisplay() && !stat->binned())
stat->display(stream, mode);
++i;
}
}
}
void
Data::python_start(const string &file)
{
if (stream)
panic("can't start python twice!");
stream = new ofstream(file.c_str(), ios::trunc);
py = new Python(*stream);
ccprintf(*stream, "import sys\n");
ccprintf(*stream, "sys.path.append('.')\n");
ccprintf(*stream, "from m5stats import *\n\n");
}
void
Data::python_dump(const string &name, const string &subname)
{
if (!py)
panic("Can't dump python without first opening the file");
if (bins.empty()) {
python(name, subname, "");
} else {
list<MainBin *>::iterator i = bins.begin();
list<MainBin *>::iterator end = bins.end();
while (i != end) {
(*i)->activate();
python(name, subname, (*i)->name());
++i;
}
}
// py->next();
}
void
Data::python(const string &name, const string &subname, const string &bin)
{
py->name("collections.append");
py->newline();
py->name("Collection");
py->newline();
py->qarg(name);
py->newline();
py->qarg(subname);
py->newline();
py->qarg(bin);
py->newline();
py->qarg(hostname());
py->newline();
py->qarg(Time::start.date());
py->newline();
py->list();
list_t::iterator i = allStats.begin();
list_t::iterator end = allStats.end();
while (i != end) {
StatData *stat = *i;
py->newline();
stat->python(*py);
++i;
}
py->newline();
py->listEnd();
py->newline();
py->nameEnd();
py->newline();
py->nameEnd();
py->newline();
}
StatData *
Data::find(void *stat)
{
map_t::const_iterator i = statMap.find(stat);
if (i == statMap.end())
return NULL;
return (*i).second;
}
void
Data::check()
{
list_t::iterator i = allStats.begin();
list_t::iterator end = allStats.end();
while (i != end) {
StatData *data = *i;
assert(data);
data->check();
++i;
}
i = allStats.begin();
int j = 0;
while (i != end) {
StatData *data = *i;
if (!(data->flags & print))
data->name = "__Stat" + to_string(j++);
++i;
}
}
void
Data::reset()
{
// reset non-binned stats
list_t::iterator i = allStats.begin();
list_t::iterator end = allStats.end();
while (i != end) {
StatData *data = *i;
if (!data->binned())
data->reset();
++i;
}
// save the bin so we can go back to where we were
MainBin *orig = MainBin::curBin();
// reset binned stats
list<MainBin *>::iterator bi = bins.begin();
list<MainBin *>::iterator be = bins.end();
while (bi != be) {
MainBin *bin = *bi;
bin->activate();
i = allStats.begin();
while (i != end) {
StatData *data = *i;
if (data->binned())
data->reset();
++i;
}
++bi;
}
// restore bin
MainBin::curBin() = orig;
}
void
Data::mapStat(void *stat, StatData *data)
{
if (statMap.find(stat) != statMap.end())
panic("shouldn't register stat twice!");
allStats.push_back(data);
#ifndef NDEBUG
bool success =
#endif
(statMap.insert(make_pair(stat, data))).second;
assert(statMap.find(stat) != statMap.end());
assert(success && "this should never fail");
}
void
Data::regBin(MainBin *bin, string _name)
{
bins.push_back(bin);
DPRINTF(Stats, "registering %s\n", _name);
}
void
Data::regPrint(void *stat)
{
StatData *data = find(stat);
if (data->flags & print)
return;
data->flags |= print;
list_t::iterator j = printStats.insert(printStats.end(), data);
inplace_merge(printStats.begin(), j, printStats.end(), StatData::less);
}
Data &
StatDB()
{
static Data db;
return db;
}
}
StatData *
DataAccess::find() const
{
return Database::StatDB().find(const_cast<void *>((const void *)this));
}
const StatData *
getStatData(const void *stat)
{
return Database::StatDB().find(const_cast<void *>(stat));
}
void
DataAccess::map(StatData *data)
{
Database::StatDB().mapStat(this, data);
}
StatData *
DataAccess::statData()
{
StatData *ptr = find();
assert(ptr);
return ptr;
}
const StatData *
DataAccess::statData() const
{
const StatData *ptr = find();
assert(ptr);
return ptr;
}
void
DataAccess::setInit()
{
statData()->flags |= init;
}
void
DataAccess::setPrint()
{
Database::StatDB().regPrint(this);
}
StatData::~StatData()
{
}
bool
StatData::less(StatData *stat1, StatData *stat2)
{
const string &name1 = stat1->name;
const string &name2 = stat2->name;
vector<string> v1;
vector<string> v2;
tokenize(v1, name1, '.');
tokenize(v2, name2, '.');
int last = min(v1.size(), v2.size()) - 1;
for (int i = 0; i < last; ++i)
if (v1[i] != v2[i])
return v1[i] < v2[i];
// Special compare for last element.
if (v1[last] == v2[last])
return v1.size() < v2.size();
else
return v1[last] < v2[last];
return false;
}
bool
StatData::baseCheck() const
{
if (!(flags & init)) {
#ifdef STAT_DEBUG
cprintf("this is stat number %d\n",(*i)->number);
#endif
panic("Not all stats have been initialized");
return false;
}
if ((flags & print) && name.empty()) {
panic("all printable stats must be named");
return false;
}
return true;
}
string
ValueToString(result_t value, DisplayMode mode, int precision)
{
stringstream val;
if (!isnan(value)) {
if (precision != -1)
val.precision(precision);
else if (value == rint(value))
val.precision(0);
val.unsetf(ios::showpoint);
val.setf(ios::fixed);
val << value;
} else {
val << (mode == mode_m5 ? "no value" : "<err: div-0>");
}
return val.str();
}
struct ScalarPrint
{
result_t value;
string name;
string desc;
StatFlags flags;
DisplayMode mode;
int precision;
result_t pdf;
result_t cdf;
ScalarPrint()
: value(0.0), flags(0), mode(DefaultMode), precision(0),
pdf(NAN), cdf(NAN)
{}
void operator()(ostream &stream) const;
};
void
ScalarPrint::operator()(ostream &stream) const
{
if (flags & nozero && value == 0.0 ||
flags & nonan && isnan(value))
return;
stringstream pdfstr, cdfstr;
if (!isnan(pdf))
ccprintf(pdfstr, "%.2f%%", pdf * 100.0);
if (!isnan(cdf))
ccprintf(cdfstr, "%.2f%%", cdf * 100.0);
if (mode == mode_simplescalar && flags & __substat) {
ccprintf(stream, "%32s %12s %10s %10s", name,
ValueToString(value, mode, precision), pdfstr, cdfstr);
} else {
ccprintf(stream, "%-40s %12s %10s %10s", name,
ValueToString(value, mode, precision), pdfstr, cdfstr);
}
if (PrintDescriptions) {
if (!desc.empty())
ccprintf(stream, " # %s", desc);
}
stream << endl;
}
struct VectorPrint
{
string name;
string desc;
vector<string> subnames;
vector<string> subdescs;
StatFlags flags;
DisplayMode mode;
int precision;
rvec_t vec;
result_t total;
VectorPrint()
: subnames(0), subdescs(0), flags(0), mode(DefaultMode),
precision(-1), total(NAN)
{}
void operator()(ostream &stream) const;
};
void
VectorPrint::operator()(std::ostream &stream) const
{
int _size = vec.size();
result_t _total = 0.0;
if (flags & (pdf | cdf)) {
for (int i = 0; i < _size; ++i) {
_total += vec[i];
}
}
string base = name + ((mode == mode_simplescalar) ? "_" : "::");
ScalarPrint print;
print.name = name;
print.desc = desc;
print.precision = precision;
print.flags = flags;
bool havesub = !subnames.empty();
if (_size == 1) {
print.value = vec[0];
print(stream);
} else if (mode == mode_m5) {
for (int i = 0; i < _size; ++i) {
if (havesub && (i >= subnames.size() || subnames[i].empty()))
continue;
print.name = base + (havesub ? subnames[i] : to_string(i));
print.desc = subdescs.empty() ? desc : subdescs[i];
print.value = vec[i];
if (_total && (flags & pdf)) {
print.pdf = vec[i] / _total;
print.cdf += print.pdf;
}
print(stream);
}
if (flags & ::Statistics::total) {
print.name = base + "total";
print.desc = desc;
print.value = total;
print(stream);
}
} else {
if (flags & ::Statistics::total) {
print.value = total;
print(stream);
}
result_t _pdf = 0.0;
result_t _cdf = 0.0;
if (flags & dist) {
ccprintf(stream, "%s.start_dist\n", name);
for (int i = 0; i < _size; ++i) {
print.name = havesub ? subnames[i] : to_string(i);
print.desc = subdescs.empty() ? desc : subdescs[i];
print.flags |= __substat;
print.value = vec[i];
if (_total) {
_pdf = vec[i] / _total;
_cdf += _pdf;
}
if (flags & pdf)
print.pdf = _pdf;
if (flags & cdf)
print.cdf = _cdf;
print(stream);
}
ccprintf(stream, "%s.end_dist\n", name);
} else {
for (int i = 0; i < _size; ++i) {
if (havesub && subnames[i].empty())
continue;
print.name = base;
print.name += havesub ? subnames[i] : to_string(i);
print.desc = subdescs.empty() ? desc : subdescs[i];
print.value = vec[i];
if (_total) {
_pdf = vec[i] / _total;
_cdf += _pdf;
} else {
_pdf = _cdf = NAN;
}
if (flags & pdf) {
print.pdf = _pdf;
print.cdf = _cdf;
}
print(stream);
}
}
}
}
struct DistPrint
{
string name;
string desc;
StatFlags flags;
DisplayMode mode;
int precision;
result_t min_val;
result_t max_val;
result_t underflow;
result_t overflow;
rvec_t vec;
result_t sum;
result_t squares;
result_t samples;
int min;
int max;
int bucket_size;
int size;
bool fancy;
void operator()(ostream &stream) const;
};
void
DistPrint::operator()(ostream &stream) const
{
if (fancy) {
ScalarPrint print;
string base = name + ((mode == mode_m5) ? "::" : "_");
print.precision = precision;
print.flags = flags;
print.mode = mode;
print.desc = desc;
print.name = base + "mean";
print.value = samples ? sum / samples : NAN;
print(stream);
print.name = base + "stdev";
print.value = samples ? sqrt((samples * squares - sum * sum) /
(samples * (samples - 1.0))) : NAN;
print(stream);
print.name = "**Ignore: " + base + "TOT";
print.value = samples;
print(stream);
return;
}
assert(size == vec.size());
result_t total = 0.0;
total += underflow;
for (int i = 0; i < size; ++i)
total += vec[i];
total += overflow;
string base = name + (mode == mode_m5 ? "::" : ".");
ScalarPrint print;
print.desc = (mode == mode_m5) ? desc : "";
print.flags = flags;
print.mode = mode;
print.precision = precision;
if (mode == mode_simplescalar) {
ccprintf(stream, "%-42s", base + "start_dist");
if (PrintDescriptions && !desc.empty())
ccprintf(stream, " # %s", desc);
stream << endl;
}
print.name = base + "samples";
print.value = samples;
print(stream);
print.name = base + "min_value";
print.value = min_val;
print(stream);
if (mode == mode_m5 || underflow > 0.0) {
print.name = base + "underflows";
print.value = underflow;
if (mode == mode_m5 && total) {
print.pdf = underflow / total;
print.cdf += print.pdf;
}
print(stream);
}
if (mode == mode_m5) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
namestr << name;
int low = i * bucket_size + min;
int high = ::min((i + 1) * bucket_size + min - 1, max);
namestr << low;
if (low < high)
namestr << "-" << high;
print.name = namestr.str();
print.value = vec[i];
if (total) {
print.pdf = vec[i] / total;
print.cdf += print.pdf;
}
print(stream);
}
} else {
int _min;
result_t _pdf;
result_t _cdf = 0.0;
print.flags = flags | __substat;
for (int i = 0; i < size; ++i) {
if (flags & nozero && vec[i] == 0.0 ||
flags & nonan && isnan(vec[i]))
continue;
_min = i * bucket_size + min;
_pdf = vec[i] / total * 100.0;
_cdf += _pdf;
print.name = ValueToString(_min, mode, 0);
print.value = vec[i];
print.pdf = (flags & pdf) ? _pdf : NAN;
print.cdf = (flags & cdf) ? _cdf : NAN;
print(stream);
}
print.flags = flags;
}
if (mode == mode_m5 || overflow > 0.0) {
print.name = base + "overflows";
print.value = overflow;
if (mode == mode_m5 && total) {
print.pdf = overflow / total;
print.cdf += print.pdf;
} else {
print.pdf = NAN;
print.cdf = NAN;
}
print(stream);
}
print.pdf = NAN;
print.cdf = NAN;
if (mode != mode_simplescalar) {
print.name = base + "total";
print.value = total;
print(stream);
}
print.name = base + "max_value";
print.value = max_val;
print(stream);
if (mode != mode_simplescalar && samples != 0) {
print.name = base + "mean";
print.value = sum / samples;
print(stream);
print.name = base + "stdev";
print.value = sqrt((samples * squares - sum * sum) /
(samples * (samples - 1.0)));
print(stream);
}
if (mode == mode_simplescalar)
ccprintf(stream, "%send_dist\n\n", base);
}
void
ScalarDataBase::display(ostream &stream, DisplayMode mode) const
{
ScalarPrint print;
print.value = val();
print.name = name;
print.desc = desc;
print.flags = flags;
print.mode = mode;
print.precision = precision;
print(stream);
}
void
VectorDataBase::display(ostream &stream, DisplayMode mode) const
{
int size = this->size();
const_cast<VectorDataBase *>(this)->update();
VectorPrint print;
print.name = name;
print.desc = desc;
print.flags = flags;
print.mode = mode;
print.precision = precision;
print.vec = val();
print.total = total();
if (!subnames.empty()) {
for (int i = 0; i < size; ++i) {
if (!subnames[i].empty()) {
print.subnames = subnames;
print.subnames.resize(size);
for (int i = 0; i < size; ++i) {
if (!subnames[i].empty() && !subdescs[i].empty()) {
print.subdescs = subdescs;
print.subdescs.resize(size);
break;
}
}
break;
}
}
}
print(stream);
}
void
Vector2dDataBase::display(ostream &stream, DisplayMode mode) const
{
const_cast<Vector2dDataBase *>(this)->update();
bool havesub = false;
VectorPrint print;
print.subnames = y_subnames;
print.flags = flags;
print.mode = mode;
print.precision = precision;
if (!subnames.empty()) {
for (int i = 0; i < x; ++i)
if (!subnames[i].empty())
havesub = true;
}
rvec_t tot_vec(y);
result_t super_total = 0.0;
for (int i = 0; i < x; ++i) {
if (havesub && (i >= subnames.size() || subnames[i].empty()))
continue;
int iy = i * y;
rvec_t yvec(y);
result_t total = 0.0;
for (int j = 0; j < y; ++j) {
yvec[j] = vec[iy + j];
tot_vec[j] += yvec[j];
total += yvec[j];
super_total += yvec[j];
}
print.name = name + "_" + (havesub ? subnames[i] : to_string(i));
print.desc = desc;
print.vec = yvec;
print.total = total;
print(stream);
}
if ((flags & ::Statistics::total) && (x > 1)) {
print.name = name;
print.desc = desc;
print.vec = tot_vec;
print.total = super_total;
print(stream);
}
}
void
DistDataBase::display(ostream &stream, DisplayMode mode) const
{
const_cast<DistDataBase *>(this)->update();
DistPrint print;
print.name = name;
print.desc = desc;
print.flags = flags;
print.mode = mode;
print.precision = precision;
print.min_val = data.min_val;
print.max_val = data.max_val;
print.underflow = data.underflow;
print.overflow = data.overflow;
print.vec = data.vec;
print.sum = data.sum;
print.squares = data.squares;
print.samples = data.samples;
print.min = data.min;
print.max = data.max;
print.bucket_size = data.bucket_size;
print.size = data.size;
print.fancy = data.fancy;
print(stream);
}
void
VectorDistDataBase::display(ostream &stream, DisplayMode mode) const
{
const_cast<VectorDistDataBase *>(this)->update();
for (int i = 0; i < size(); ++i) {
DistPrint print;
print.name = name +
(subnames[i].empty() ? ("_" + to_string(i)) : subnames[i]);
print.desc = subdescs[i].empty() ? desc : subdescs[i];
print.flags = flags;
print.mode = mode;
print.precision = precision;
print.min_val = data[i].min_val;
print.max_val = data[i].max_val;
print.underflow = data[i].underflow;
print.overflow = data[i].overflow;
print.vec = data[i].vec;
print.sum = data[i].sum;
print.squares = data[i].squares;
print.samples = data[i].samples;
print.min = data[i].min;
print.max = data[i].max;
print.bucket_size = data[i].bucket_size;
print.size = data[i].size;
print.fancy = data[i].fancy;
print(stream);
}
}
void
ScalarDataBase::python(Python &py) const
{
py.name("Scalar");
py.qarg(name);
py.qqqarg(desc);
py.kwarg("binned", binned());
py.kwarg("precision", precision);
py.kwarg("flags", flags);
if (prereq)
py.qkwarg("prereq", prereq->name);
py.kwarg("value", val());
py.nameEnd();
}
void
VectorDataBase::python(Python &py) const
{
const_cast<VectorDataBase *>(this)->update();
py.name("Vector");
py.qarg(name);
py.qqqarg(desc);
py.kwarg("binned", binned());
py.kwarg("precision", precision);
py.kwarg("flags", flags);
if (prereq)
py.qkwarg("prereq", prereq->name);
py.kwarg("value", val());
if (!subnames.empty())
py.qkwarg("subnames", subnames);
if (!subdescs.empty())
py.qkwarg("subdescs", subdescs);
py.nameEnd();
}
void
DistDataData::python(Python &py, const string &name) const
{
string s = name.empty() ? "" : name + "=";
if (samples == 0 || fancy)
s += "SimpleDist";
else
s += "FullDist";
py.name(s);
py.arg(sum);
py.arg(squares);
py.arg(samples);
if (samples && !fancy) {
py.arg(min_val);
py.arg(min_val);
py.arg(underflow);
py.arg(vec);
py.arg(overflow);
py.arg(min);
py.arg(max);
py.arg(bucket_size);
py.arg(size);
}
py.nameEnd();
}
void
FormulaDataBase::python(Python &py) const
{
const_cast<FormulaDataBase *>(this)->update();
py.name("Formula");
py.qarg(name);
py.qqqarg(desc);
py.kwarg("binned", binned());
py.kwarg("precision", precision);
py.kwarg("flags", flags);
if (prereq)
py.qkwarg("prereq", prereq->name);
py.qkwarg("formula", str());
if (!subnames.empty())
py.qkwarg("subnames", subnames);
if (!subdescs.empty())
py.qkwarg("subdescs", subdescs);
py.nameEnd();
}
void
DistDataBase::python(Python &py) const
{
const_cast<DistDataBase *>(this)->update();
py.name("Dist");
py.qarg(name);
py.qqqarg(desc);
py.kwarg("binned", binned());
py.kwarg("precision", precision);
py.kwarg("flags", flags);
if (prereq)
py.qkwarg("prereq", prereq->name);
data.python(py, "dist");
py.nameEnd();
}
void
VectorDistDataBase::python(Python &py) const
{
const_cast<VectorDistDataBase *>(this)->update();
py.name("VectorDist");
py.qarg(name);
py.qqqarg(desc);
py.kwarg("binned", binned());
py.kwarg("precision", precision);
py.kwarg("flags", flags);
if (prereq)
py.qkwarg("prereq", prereq->name);
if (!subnames.empty())
py.qkwarg("subnames", subnames);
if (!subdescs.empty())
py.qkwarg("subdescs", subdescs);
py.tuple("dist");
typedef std::vector<DistDataData>::const_iterator iter;
iter i = data.begin();
iter end = data.end();
while (i != end) {
i->python(py, "");
++i;
}
py.tupleEnd();
py.nameEnd();
}
void
Vector2dDataBase::python(Python &py) const
{
const_cast<Vector2dDataBase *>(this)->update();
py.name("Vector2d");
py.qarg(name);
py.qqqarg(desc);
py.kwarg("binned", binned());
py.kwarg("precision", precision);
py.kwarg("flags", flags);
if (prereq)
py.qkwarg("prereq", prereq->name);
py.kwarg("value", vec);
if (!subnames.empty())
py.qkwarg("subnames", subnames);
if (!subdescs.empty())
py.qkwarg("subdescs", subdescs);
if (!y_subnames.empty())
py.qkwarg("ysubnames", y_subnames);
py.kwarg("x", x);
py.kwarg("y", y);
py.nameEnd();
}
void
FormulaBase::val(rvec_t &vec) const
{
if (root)
vec = root->val();
}
result_t
FormulaBase::total() const
{
return root ? root->total() : 0.0;
}
size_t
FormulaBase::size() const
{
if (!root)
return 0;
else
return root->size();
}
bool
FormulaBase::binned() const
{
return root && root->binned();
}
void
FormulaBase::reset()
{
}
bool
FormulaBase::zero() const
{
rvec_t vec;
val(vec);
for (int i = 0; i < vec.size(); ++i)
if (vec[i] != 0.0)
return false;
return true;
}
void
FormulaBase::update(StatData *)
{
}
string
FormulaBase::str() const
{
return root ? root->str() : "";
}
Formula::Formula()
{
setInit();
}
Formula::Formula(Temp r)
{
root = r;
assert(size());
}
const Formula &
Formula::operator=(Temp r)
{
assert(!root && "Can't change formulas");
root = r;
assert(size());
return *this;
}
const Formula &
Formula::operator+=(Temp r)
{
if (root)
root = NodePtr(new BinaryNode<std::plus<result_t> >(root, r));
else
root = r;
assert(size());
return *this;
}
MainBin::MainBin(const string &name)
: _name(name), mem(NULL), memsize(-1)
{
Database::StatDB().regBin(this, name);
}
MainBin::~MainBin()
{
if (mem)
delete [] mem;
}
char *
MainBin::memory(off_t off)
{
if (memsize == -1)
memsize = CeilPow2((size_t) offset());
if (!mem) {
mem = new char[memsize];
memset(mem, 0, memsize);
}
assert(offset() <= size());
return mem + off;
}
void
check()
{
Database::StatDB().check();
}
void
dump(ostream &stream, DisplayMode mode)
{
Database::StatDB().dump(stream, mode);
}
void
python_start(const string &file)
{
Database::StatDB().python_start(file);
}
void
python_dump(const string &name, const string &subname)
{
Database::StatDB().python_dump(name, subname);
}
CallbackQueue resetQueue;
void
registerResetCallback(Callback *cb)
{
resetQueue.add(cb);
}
void
reset()
{
Database::StatDB().reset();
resetQueue.process();
}
} // namespace Statistics