No description
Find a file
Andreas Sandberg f485ad1908 kvm: Basic support for hardware virtualized CPUs
This changeset introduces the architecture independent parts required
to support KVM-accelerated CPUs. It introduces two new simulation
objects:

KvmVM -- The KVM VM is a component shared between all CPUs in a shared
         memory domain. It is typically instantiated as a child of the
         system object in the simulation hierarchy. It provides access
         to KVM VM specific interfaces.

BaseKvmCPU -- Abstract base class for all KVM-based CPUs. Architecture
	      dependent CPU implementations inherit from this class
	      and implement the following methods:

                * updateKvmState() -- Update the
                  architecture-dependent KVM state from the gem5
                  thread context associated with the CPU.

                * updateThreadContext() -- Update the thread context
                  from the architecture-dependent KVM state.

                * dump() -- Dump the KVM state using (optional).

	      In order to deliver interrupts to the guest, CPU
	      implementations typically override the tick() method and
	      check for, and deliver, interrupts prior to entering
	      KVM.

Hardware-virutalized CPU currently have the following limitations:
 * SE mode is not supported.
 * PC events are not supported.
 * Timing statistics are currently very limited. The current approach
   simply scales the host cycles with a user-configurable factor.
 * The simulated system must not contain any caches.
 * Since cycle counts are approximate, there is no way to request an
   exact number of cycles (or instructions) to be executed by the CPU.
 * Hardware virtualized CPUs and gem5 CPUs must not execute at the
   same time in the same simulator instance.
 * Only single-CPU systems can be simulated.
 * Remote GDB connections to the guest system are not supported.

Additionally, m5ops requires an architecture specific interface and
might not be supported.
2013-04-22 13:20:32 -04:00
build_opts Regression: Add a test for x86 timing full system ruby simulation 2012-04-25 22:43:36 -05:00
configs cpu: generate SimPoint basic block vector profiles 2013-04-22 13:20:31 -04:00
ext ext lib: add libfdt to enable flattened device tree support 2013-02-15 18:48:59 -05:00
src kvm: Basic support for hardware virtualized CPUs 2013-04-22 13:20:32 -04:00
system ARM: Fix issue with with way MPIDR is read to include affinity levels. 2012-09-07 14:20:53 -05:00
tests arm: Enable support for triggering a sim panic on kernel panics 2013-04-22 13:20:31 -04:00
util util: Add a utility script for decoding packet traces 2013-03-26 14:49:58 -04:00
.hgignore .hgignore: added src/doxygen 2010-07-27 20:00:38 -07:00
.hgtags Added tag stable_2012_06_28 for changeset f75ee4849c40 2012-07-19 16:53:02 -07:00
COPYING copyright: Add code for finding all copyright blocks and create a COPYING file 2011-06-02 17:36:07 -07:00
LICENSE copyright: Add code for finding all copyright blocks and create a COPYING file 2011-06-02 17:36:07 -07:00
README gem5: Update the README file to be a bit less out-of-date. 2012-09-25 11:49:40 -05:00
SConstruct kvm: Basic support for hardware virtualized CPUs 2013-04-22 13:20:32 -04:00

This is the gem5 simulator.

For detailed information about building the simulator and getting
started please refer to:
* The main website:     http://www.gem5.org
* Documentation wiki:   http://www.gem5.org/Documentation 
* Doxygen generated:    http://www.gem5.org/docs
* Tutorials:            http://www.gem5.org/Tutorials


Specific pages of interest are:
http://www.gem5.org/Introduction
http://www.gem5.org/Build_System
http://www.gem5.org/Dependencies
http://www.gem5.org/Running_gem5

Short version:
External tools and required versions

To build gem5, you will need the following software:
g++ version 4.3 or newer.
Python, version 2.4 - 2.7 (we don't support Python 3.X). gem5 links in the 
    Python interpreter, so you need the Python header files and shared 
    library (e.g., /usr/lib/libpython2.4.so) in addition to the interpreter
    executable. These may or may not be installed by default. For example,
    on Debian/Ubuntu, you need the "python-dev" package in addition to the
    "python" package. If you need a newer or different Python installation
     but can't or don't want to upgrade the default Python on your system,
     see http://www.gem5.org/Using_a_non-default_Python_installation
SCons, version 0.98.1 or newer. SCons is a powerful replacement for make. 
    If you don't have administrator privileges on your machine, you can use the
    "scons-local" package to install scons in your m5 directory, or install SCons
    in your home directory using the '--prefix=' option.  
SWIG, version 1.3.34 or newer
zlib, any recent version. For Debian/Ubuntu, you will need the "zlib-dev" or
    "zlib1g-dev" package to get the zlib.h header file as well as the library
    itself.
m4, the macro processor.


4. In this directory, type 'scons build/<ARCH>/gem5.opt' where ARCH is one
of ALPHA, ARM, MIPS, POWER, SPARC, or X86. This will build an optimized version
of the gem5 binary (gem5.opt) for the the specified architecture.

If you have questions, please send mail to gem5-users@gem5.org

WHAT'S INCLUDED (AND NOT)
-------------------------

The basic source release includes these subdirectories:
 - gem5:
   - configs: example simulation configuration scripts
   - ext: less-common external packages needed to build gem5
   - src: source code of the gem5 simulator
   - system: source for some optional system software for simulated systems
   - tests: regression tests
   - util: useful utility programs and files

To run full-system simulations, you will need compiled system firmware
(console and PALcode for Alpha), kernel binaries and one or more disk images. 
Please see the gem5 download page for these items at http://www.gem5.org/Download