1c782ad134
the source tree for *.odesc files every time we run the script. This is now factored out into load_odesc.py, which should be used to generate m5odescs.py, which is then used as the source of object & parameter definitions. util/config/m5configbase.py: - Move odesc loading code to separate load_odescs.py, so maybe someday that can be done once at build time. - Print out children of a node in the order they are added. - Automatically assign a parent-less node to the first node for which it is used as the value of a parameter. (Easier demonstrated than explained.) - Calculate object paths dynamically when requested rather than trying to keep them up to date as objects get assigned to parents. --HG-- rename : util/config/m5config.py => util/config/m5configbase.py extra : convert_revision : 2183a09d32f3862ab377e0a929715f30505a03cb
697 lines
28 KiB
Python
697 lines
28 KiB
Python
from __future__ import generators
|
|
|
|
import os
|
|
import re
|
|
import sys
|
|
|
|
#####################################################################
|
|
#
|
|
# M5 Python Configuration Utility
|
|
#
|
|
# The basic idea is to write simple Python programs that build Python
|
|
# objects corresponding to M5 SimObjects for the deisred simulation
|
|
# configuration. For now, the Python emits a .ini file that can be
|
|
# parsed by M5. In the future, some tighter integration between M5
|
|
# and the Python interpreter may allow bypassing the .ini file.
|
|
#
|
|
# Each SimObject class in M5 is represented by a Python class with the
|
|
# same name. The Python inheritance tree mirrors the M5 C++ tree
|
|
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
|
|
# SimObjects inherit from a single SimObject base class). To specify
|
|
# an instance of an M5 SimObject in a configuration, the user simply
|
|
# instantiates the corresponding Python object. The parameters for
|
|
# that SimObject are given by assigning to attributes of the Python
|
|
# object, either using keyword assignment in the constructor or in
|
|
# separate assignment statements. For example:
|
|
#
|
|
# cache = BaseCache('my_cache', root, size=64*K)
|
|
# cache.hit_latency = 3
|
|
# cache.assoc = 8
|
|
#
|
|
# (The first two constructor arguments specify the name of the created
|
|
# cache and its parent node in the hierarchy.)
|
|
#
|
|
# The magic lies in the mapping of the Python attributes for SimObject
|
|
# classes to the actual SimObject parameter specifications. This
|
|
# allows parameter validity checking in the Python code. Continuing
|
|
# the example above, the statements "cache.blurfl=3" or
|
|
# "cache.assoc='hello'" would both result in runtime errors in Python,
|
|
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
|
|
# parameter requires an integer, respectively. This magic is done
|
|
# primarily by overriding the special __setattr__ method that controls
|
|
# assignment to object attributes.
|
|
#
|
|
# The Python module provides another class, ConfigNode, which is a
|
|
# superclass of SimObject. ConfigNode implements the parent/child
|
|
# relationship for building the configuration hierarchy tree.
|
|
# Concrete instances of ConfigNode can be used to group objects in the
|
|
# hierarchy, but do not correspond to SimObjects themselves (like a
|
|
# .ini section with "children=" but no "type=".
|
|
#
|
|
# Once a set of Python objects have been instantiated in a hierarchy,
|
|
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
|
|
# will generate a .ini file. See simple-4cpu.py for an example
|
|
# (corresponding to m5-test/simple-4cpu.ini).
|
|
#
|
|
#####################################################################
|
|
|
|
#####################################################################
|
|
#
|
|
# ConfigNode/SimObject classes
|
|
#
|
|
# The Python class hierarchy rooted by ConfigNode (which is the base
|
|
# class of SimObject, which in turn is the base class of all other M5
|
|
# SimObject classes) has special attribute behavior. In general, an
|
|
# object in this hierarchy has three categories of attribute-like
|
|
# things:
|
|
#
|
|
# 1. Regular Python methods and variables. These must start with an
|
|
# underscore to be treated normally.
|
|
#
|
|
# 2. SimObject parameters. These values are stored as normal Python
|
|
# attributes, but all assignments to these attributes are checked
|
|
# against the pre-defined set of parameters stored in the class's
|
|
# _param_dict dictionary. Assignments to attributes that do not
|
|
# correspond to predefined parameters, or that are not of the correct
|
|
# type, incur runtime errors.
|
|
#
|
|
# 3. Hierarchy children. The child nodes of a ConfigNode are stored
|
|
# in the node's _children dictionary, but can be accessed using the
|
|
# Python attribute dot-notation (just as they are printed out by the
|
|
# simulator). Children cannot be created using attribute assigment;
|
|
# they must be added by specifying the parent node in the child's
|
|
# constructor or using the '+=' operator.
|
|
|
|
# The SimObject parameters are the most complex, for a few reasons.
|
|
# First, both parameter descriptions and parameter values are
|
|
# inherited. Thus parameter description lookup must go up the
|
|
# inheritance chain like normal attribute lookup, but this behavior
|
|
# must be explicitly coded since the lookup occurs in each class's
|
|
# _param_dict attribute. Second, because parameter values can be set
|
|
# on SimObject classes (to implement default values), the parameter
|
|
# checking behavior must be enforced on class attribute assignments as
|
|
# well as instance attribute assignments. Finally, because we allow
|
|
# class specialization via inheritance (e.g., see the L1Cache class in
|
|
# the simple-4cpu.py example), we must do parameter checking even on
|
|
# class instantiation. To provide all these features, we use a
|
|
# metaclass to define most of the SimObject parameter behavior for
|
|
# this class hierarchy.
|
|
#
|
|
#####################################################################
|
|
|
|
# The metaclass for ConfigNode (and thus for everything that derives
|
|
# from ConfigNode, including SimObject). This class controls how new
|
|
# classes that derive from ConfigNode are instantiated, and provides
|
|
# inherited class behavior (just like a class controls how instances
|
|
# of that class are instantiated, and provides inherited instance
|
|
# behavior).
|
|
class MetaConfigNode(type):
|
|
|
|
# __new__ is called before __init__, and is where the statements
|
|
# in the body of the class definition get loaded into the class's
|
|
# __dict__. We intercept this to filter out parameter assignments
|
|
# and only allow "private" attributes to be passed to the base
|
|
# __new__ (starting with underscore).
|
|
def __new__(cls, name, bases, dict):
|
|
priv_keys = [k for k in dict.iterkeys() if k.startswith('_')]
|
|
priv_dict = {}
|
|
for k in priv_keys: priv_dict[k] = dict[k]; del dict[k]
|
|
# entries left in dict will get passed to __init__, where we'll
|
|
# deal with them as params.
|
|
return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict)
|
|
|
|
# initialization: start out with an empty param dict (makes life
|
|
# simpler if we can assume _param_dict is always valid). Also
|
|
# build inheritance list to simplify searching for inherited
|
|
# params. Finally set parameters specified in class definition
|
|
# (if any).
|
|
def __init__(cls, name, bases, dict):
|
|
super(MetaConfigNode, cls).__init__(cls, name, bases, {})
|
|
# initialize _param_dict to empty
|
|
cls._param_dict = {}
|
|
# __mro__ is the ordered list of classes Python uses for
|
|
# method resolution. We want to pick out the ones that have a
|
|
# _param_dict attribute for doing parameter lookups.
|
|
cls._param_bases = \
|
|
[c for c in cls.__mro__ if hasattr(c, '_param_dict')]
|
|
# initialize attributes with values from class definition
|
|
for (pname, value) in dict.items():
|
|
try:
|
|
setattr(cls, pname, value)
|
|
except Exception, exc:
|
|
print "Error setting '%s' to '%s' on class '%s'\n" \
|
|
% (pname, value, cls.__name__), exc
|
|
|
|
# set the class's parameter dictionary (called when loading
|
|
# class descriptions)
|
|
def set_param_dict(cls, param_dict):
|
|
# should only be called once (current one should be empty one
|
|
# from __init__)
|
|
assert not cls._param_dict
|
|
cls._param_dict = param_dict
|
|
# initialize attributes with default values
|
|
for (pname, param) in param_dict.items():
|
|
try:
|
|
setattr(cls, pname, param.default)
|
|
except Exception, exc:
|
|
print "Error setting '%s' default on class '%s'\n" \
|
|
% (pname, cls.__name__), exc
|
|
|
|
# Set the class's parameter dictionary given a code string of
|
|
# parameter initializers (as from an object description file).
|
|
# Note that the caller must pass in the namespace in which to
|
|
# execute the code (usually the caller's globals()), since if we
|
|
# call globals() from inside this function all we get is this
|
|
# module's internal scope.
|
|
def init_params(cls, init_code, ctx):
|
|
dict = {}
|
|
try:
|
|
exec fixPythonIndentation(init_code) in ctx, dict
|
|
except Exception, exc:
|
|
print "Error in %s.init_params:" % cls.__name__, exc
|
|
raise
|
|
cls.set_param_dict(dict)
|
|
|
|
# Lookup a parameter description by name in the given class. Use
|
|
# the _param_bases list defined in __init__ to go up the
|
|
# inheritance hierarchy if necessary.
|
|
def lookup_param(cls, param_name):
|
|
for c in cls._param_bases:
|
|
param = c._param_dict.get(param_name)
|
|
if param: return param
|
|
return None
|
|
|
|
# Set attribute (called on foo.attr_name = value when foo is an
|
|
# instance of class cls).
|
|
def __setattr__(cls, attr_name, value):
|
|
# normal processing for private attributes
|
|
if attr_name.startswith('_'):
|
|
object.__setattr__(cls, attr_name, value)
|
|
return
|
|
# no '_': must be SimObject param
|
|
param = cls.lookup_param(attr_name)
|
|
if not param:
|
|
raise AttributeError, \
|
|
"Class %s has no parameter %s" % (cls.__name__, attr_name)
|
|
# It's ok: set attribute by delegating to 'object' class.
|
|
# Note the use of param.make_value() to verify/canonicalize
|
|
# the assigned value
|
|
object.__setattr__(cls, attr_name, param.make_value(value))
|
|
|
|
# generator that iterates across all parameters for this class and
|
|
# all classes it inherits from
|
|
def all_param_names(cls):
|
|
for c in cls._param_bases:
|
|
for p in c._param_dict.iterkeys():
|
|
yield p
|
|
|
|
# The ConfigNode class is the root of the special hierarchy. Most of
|
|
# the code in this class deals with the configuration hierarchy itself
|
|
# (parent/child node relationships).
|
|
class ConfigNode(object):
|
|
# Specify metaclass. Any class inheriting from ConfigNode will
|
|
# get this metaclass.
|
|
__metaclass__ = MetaConfigNode
|
|
|
|
# Constructor. Since bare ConfigNodes don't have parameters, just
|
|
# worry about the name and the parent/child stuff.
|
|
def __init__(self, _name, _parent=None):
|
|
# Type-check _name
|
|
if type(_name) != str:
|
|
if isinstance(_name, ConfigNode):
|
|
# special case message for common error of trying to
|
|
# coerce a SimObject to the wrong type
|
|
raise TypeError, \
|
|
"Attempt to coerce %s to %s" \
|
|
% (_name.__class__.__name__, self.__class__.__name__)
|
|
else:
|
|
raise TypeError, \
|
|
"%s name must be string (was %s, %s)" \
|
|
% (self.__class__.__name__, _name, type(_name))
|
|
# if specified, parent must be a subclass of ConfigNode
|
|
if _parent != None and not isinstance(_parent, ConfigNode):
|
|
raise TypeError, \
|
|
"%s parent must be ConfigNode subclass (was %s, %s)" \
|
|
% (self.__class__.__name__, _name, type(_name))
|
|
self._name = _name
|
|
self._parent = _parent
|
|
if (_parent):
|
|
_parent._add_child(self)
|
|
self._children = {}
|
|
# keep a list of children in addition to the dictionary keys
|
|
# so we can remember the order they were added and print them
|
|
# out in that order.
|
|
self._child_list = []
|
|
|
|
# When printing (e.g. to .ini file), just give the name.
|
|
def __str__(self):
|
|
return self._name
|
|
|
|
# Catch attribute accesses that could be requesting children, and
|
|
# satisfy them. Note that __getattr__ is called only if the
|
|
# regular attribute lookup fails, so private and parameter lookups
|
|
# will already be satisfied before we ever get here.
|
|
def __getattr__(self, name):
|
|
try:
|
|
return self._children[name]
|
|
except KeyError:
|
|
raise AttributeError, \
|
|
"Node '%s' has no attribute or child '%s'" \
|
|
% (self._name, name)
|
|
|
|
# Set attribute. All attribute assignments go through here. Must
|
|
# be private attribute (starts with '_') or valid parameter entry.
|
|
# Basically identical to MetaConfigClass.__setattr__(), except
|
|
# this sets attributes on specific instances rather than on classes.
|
|
def __setattr__(self, attr_name, value):
|
|
if attr_name.startswith('_'):
|
|
object.__setattr__(self, attr_name, value)
|
|
return
|
|
# not private; look up as param
|
|
param = self.__class__.lookup_param(attr_name)
|
|
if not param:
|
|
raise AttributeError, \
|
|
"Class %s has no parameter %s" \
|
|
% (self.__class__.__name__, attr_name)
|
|
# It's ok: set attribute by delegating to 'object' class.
|
|
# Note the use of param.make_value() to verify/canonicalize
|
|
# the assigned value.
|
|
v = param.make_value(value)
|
|
object.__setattr__(self, attr_name, v)
|
|
|
|
# A little convenient magic: if the parameter is a ConfigNode
|
|
# (or vector of ConfigNodes, or anything else with a
|
|
# '_set_parent_if_none' function attribute) that does not have
|
|
# a parent (and so is not part of the configuration
|
|
# hierarchy), then make this node its parent.
|
|
if hasattr(v, '_set_parent_if_none'):
|
|
v._set_parent_if_none(self)
|
|
|
|
def _path(self):
|
|
# Return absolute path from root.
|
|
if not self._parent and self._name != 'Universe':
|
|
print >> sys.stderr, "Warning:", self._name, "has no parent"
|
|
parent_path = self._parent and self._parent._path()
|
|
if parent_path and parent_path != 'Universe':
|
|
return parent_path + '.' + self._name
|
|
else:
|
|
return self._name
|
|
|
|
# Add a child to this node.
|
|
def _add_child(self, new_child):
|
|
# set child's parent before calling this function
|
|
assert new_child._parent == self
|
|
if not isinstance(new_child, ConfigNode):
|
|
raise TypeError, \
|
|
"ConfigNode child must also be of class ConfigNode"
|
|
if new_child._name in self._children:
|
|
raise AttributeError, \
|
|
"Node '%s' already has a child '%s'" \
|
|
% (self._name, new_child._name)
|
|
self._children[new_child._name] = new_child
|
|
self._child_list += [new_child]
|
|
|
|
# operator overload for '+='. You can say "node += child" to add
|
|
# a child that was created with parent=None. An early attempt
|
|
# at playing with syntax; turns out not to be that useful.
|
|
def __iadd__(self, new_child):
|
|
if new_child._parent != None:
|
|
raise AttributeError, \
|
|
"Node '%s' already has a parent" % new_child._name
|
|
new_child._parent = self
|
|
self._add_child(new_child)
|
|
return self
|
|
|
|
# Set this instance's parent to 'parent' if it doesn't already
|
|
# have one. See ConfigNode.__setattr__().
|
|
def _set_parent_if_none(self, parent):
|
|
if self._parent == None:
|
|
parent += self
|
|
|
|
# Print instance info to .ini file.
|
|
def _instantiate(self):
|
|
print '[' + self._path() + ']' # .ini section header
|
|
if self._child_list:
|
|
# instantiate children in same order they were added for
|
|
# backward compatibility (else we can end up with cpu1
|
|
# before cpu0).
|
|
print 'children =', ' '.join([c._name for c in self._child_list])
|
|
self._instantiateParams()
|
|
print
|
|
# recursively dump out children
|
|
for c in self._child_list:
|
|
c._instantiate()
|
|
|
|
# ConfigNodes have no parameters. Overridden by SimObject.
|
|
def _instantiateParams(self):
|
|
pass
|
|
|
|
# SimObject is a minimal extension of ConfigNode, implementing a
|
|
# hierarchy node that corresponds to an M5 SimObject. It prints out a
|
|
# "type=" line to indicate its SimObject class, prints out the
|
|
# assigned parameters corresponding to its class, and allows
|
|
# parameters to be set by keyword in the constructor. Note that most
|
|
# of the heavy lifting for the SimObject param handling is done in the
|
|
# MetaConfigNode metaclass.
|
|
|
|
class SimObject(ConfigNode):
|
|
# initialization: like ConfigNode, but handle keyword-based
|
|
# parameter initializers.
|
|
def __init__(self, _name, _parent=None, **params):
|
|
ConfigNode.__init__(self, _name, _parent)
|
|
for param, value in params.items():
|
|
setattr(self, param, value)
|
|
|
|
# print type and parameter values to .ini file
|
|
def _instantiateParams(self):
|
|
print "type =", self.__class__._name
|
|
for pname in self.__class__.all_param_names():
|
|
value = getattr(self, pname)
|
|
if value != None:
|
|
print pname, '=', value
|
|
|
|
def _sim_code(cls):
|
|
name = cls.__name__
|
|
param_names = cls._param_dict.keys()
|
|
param_names.sort()
|
|
code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name
|
|
decls = [" " + cls._param_dict[pname].sim_decl(pname) \
|
|
for pname in param_names]
|
|
code += "\n".join(decls) + "\n"
|
|
code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name
|
|
code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name
|
|
inits = [" " + cls._param_dict[pname].sim_init(pname) \
|
|
for pname in param_names]
|
|
code += ",\n".join(inits) + "\n"
|
|
code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name
|
|
return code
|
|
_sim_code = classmethod(_sim_code)
|
|
|
|
#####################################################################
|
|
#
|
|
# Parameter description classes
|
|
#
|
|
# The _param_dict dictionary in each class maps parameter names to
|
|
# either a Param or a VectorParam object. These objects contain the
|
|
# parameter description string, the parameter type, and the default
|
|
# value (loaded from the PARAM section of the .odesc files). The
|
|
# make_value() method on these objects is used to force whatever value
|
|
# is assigned to the parameter to the appropriate type.
|
|
#
|
|
# Note that the default values are loaded into the class's attribute
|
|
# space when the parameter dictionary is initialized (in
|
|
# MetaConfigNode.set_param_dict()); after that point they aren't
|
|
# used.
|
|
#
|
|
#####################################################################
|
|
|
|
def isNullPointer(value):
|
|
return isinstance(value, NullSimObject)
|
|
|
|
# Regular parameter.
|
|
class Param(object):
|
|
# Constructor. E.g., Param(Int, "number of widgets", 5)
|
|
def __init__(self, ptype, desc, default=None):
|
|
self.ptype = ptype
|
|
self.ptype_name = self.ptype.__name__
|
|
self.desc = desc
|
|
self.default = default
|
|
|
|
# Convert assigned value to appropriate type. Force parameter
|
|
# value (rhs of '=') to ptype (or None, which means not set).
|
|
def make_value(self, value):
|
|
# nothing to do if None or already correct type. Also allow NULL
|
|
# pointer to be assigned where a SimObject is expected.
|
|
if value == None or isinstance(value, self.ptype) or \
|
|
isNullPointer(value) and issubclass(self.ptype, ConfigNode):
|
|
return value
|
|
# this type conversion will raise an exception if it's illegal
|
|
return self.ptype(value)
|
|
|
|
def sim_decl(self, name):
|
|
return 'Param<%s> %s;' % (self.ptype_name, name)
|
|
|
|
def sim_init(self, name):
|
|
if self.default == None:
|
|
return 'INIT_PARAM(%s, "%s")' % (name, self.desc)
|
|
else:
|
|
return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \
|
|
(name, self.desc, str(self.default))
|
|
|
|
# The _VectorParamValue class is a wrapper for vector-valued
|
|
# parameters. The leading underscore indicates that users shouldn't
|
|
# see this class; it's magically generated by VectorParam. The
|
|
# parameter values are stored in the 'value' field as a Python list of
|
|
# whatever type the parameter is supposed to be. The only purpose of
|
|
# storing these instead of a raw Python list is that we can override
|
|
# the __str__() method to not print out '[' and ']' in the .ini file.
|
|
class _VectorParamValue(object):
|
|
def __init__(self, value):
|
|
assert isinstance(value, list) or value == None
|
|
self.value = value
|
|
|
|
def __str__(self):
|
|
return ' '.join(map(str, self.value))
|
|
|
|
# Set member instance's parents to 'parent' if they don't already
|
|
# have one. Extends "magic" parenting of ConfigNodes to vectors
|
|
# of ConfigNodes as well. See ConfigNode.__setattr__().
|
|
def _set_parent_if_none(self, parent):
|
|
if self.value and hasattr(self.value[0], '_set_parent_if_none'):
|
|
for v in self.value:
|
|
v._set_parent_if_none(parent)
|
|
|
|
# Vector-valued parameter description. Just like Param, except that
|
|
# the value is a vector (list) of the specified type instead of a
|
|
# single value.
|
|
class VectorParam(Param):
|
|
|
|
# Inherit Param constructor. However, the resulting parameter
|
|
# will be a list of ptype rather than a single element of ptype.
|
|
def __init__(self, ptype, desc, default=None):
|
|
Param.__init__(self, ptype, desc, default)
|
|
|
|
# Convert assigned value to appropriate type. If the RHS is not a
|
|
# list or tuple, it generates a single-element list.
|
|
def make_value(self, value):
|
|
if value == None: return value
|
|
if isinstance(value, list) or isinstance(value, tuple):
|
|
# list: coerce each element into new list
|
|
val_list = [Param.make_value(self, v) for v in iter(value)]
|
|
else:
|
|
# singleton: coerce & wrap in a list
|
|
val_list = [Param.make_value(self, value)]
|
|
# wrap list in _VectorParamValue (see above)
|
|
return _VectorParamValue(val_list)
|
|
|
|
def sim_decl(self, name):
|
|
return 'VectorParam<%s> %s;' % (self.ptype_name, name)
|
|
|
|
# sim_init inherited from Param
|
|
|
|
#####################################################################
|
|
#
|
|
# Parameter Types
|
|
#
|
|
# Though native Python types could be used to specify parameter types
|
|
# (the 'ptype' field of the Param and VectorParam classes), it's more
|
|
# flexible to define our own set of types. This gives us more control
|
|
# over how Python expressions are converted to values (via the
|
|
# __init__() constructor) and how these values are printed out (via
|
|
# the __str__() conversion method). Eventually we'll need these types
|
|
# to correspond to distinct C++ types as well.
|
|
#
|
|
#####################################################################
|
|
|
|
# Integer parameter type.
|
|
class Int(object):
|
|
# Constructor. Value must be Python int or long (long integer).
|
|
def __init__(self, value):
|
|
t = type(value)
|
|
if t == int or t == long:
|
|
self.value = value
|
|
else:
|
|
raise TypeError, "Int param got value %s %s" % (repr(value), t)
|
|
|
|
# Use Python string conversion. Note that this puts an 'L' on the
|
|
# end of long integers; we can strip that off here if it gives us
|
|
# trouble.
|
|
def __str__(self):
|
|
return str(self.value)
|
|
|
|
# Counter, Addr, and Tick are just aliases for Int for now.
|
|
class Counter(Int):
|
|
pass
|
|
|
|
class Addr(Int):
|
|
pass
|
|
|
|
class Tick(Int):
|
|
pass
|
|
|
|
# Boolean parameter type.
|
|
class Bool(object):
|
|
|
|
# Constructor. Typically the value will be one of the Python bool
|
|
# constants True or False (or the aliases true and false below).
|
|
# Also need to take integer 0 or 1 values since bool was not a
|
|
# distinct type in Python 2.2. Parse a bunch of boolean-sounding
|
|
# strings too just for kicks.
|
|
def __init__(self, value):
|
|
t = type(value)
|
|
if t == bool:
|
|
self.value = value
|
|
elif t == int or t == long:
|
|
if value == 1:
|
|
self.value = True
|
|
elif value == 0:
|
|
self.value = False
|
|
elif t == str:
|
|
v = value.lower()
|
|
if v == "true" or v == "t" or v == "yes" or v == "y":
|
|
self.value = True
|
|
elif v == "false" or v == "f" or v == "no" or v == "n":
|
|
self.value = False
|
|
# if we didn't set it yet, it must not be something we understand
|
|
if not hasattr(self, 'value'):
|
|
raise TypeError, "Bool param got value %s %s" % (repr(value), t)
|
|
|
|
# Generate printable string version.
|
|
def __str__(self):
|
|
if self.value: return "true"
|
|
else: return "false"
|
|
|
|
# String-valued parameter.
|
|
class String(object):
|
|
# Constructor. Value must be Python string.
|
|
def __init__(self, value):
|
|
t = type(value)
|
|
if t == str:
|
|
self.value = value
|
|
else:
|
|
raise TypeError, "String param got value %s %s" % (repr(value), t)
|
|
|
|
# Generate printable string version. Not too tricky.
|
|
def __str__(self):
|
|
return self.value
|
|
|
|
# Special class for NULL pointers. Note the special check in
|
|
# make_param_value() above that lets these be assigned where a
|
|
# SimObject is required.
|
|
class NullSimObject(object):
|
|
# Constructor. No parameters, nothing to do.
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __str__(self):
|
|
return "NULL"
|
|
|
|
# The only instance you'll ever need...
|
|
NULL = NullSimObject()
|
|
|
|
# Enumerated types are a little more complex. The user specifies the
|
|
# type as Enum(foo) where foo is either a list or dictionary of
|
|
# alternatives (typically strings, but not necessarily so). (In the
|
|
# long run, the integer value of the parameter will be the list index
|
|
# or the corresponding dictionary value. For now, since we only check
|
|
# that the alternative is valid and then spit it into a .ini file,
|
|
# there's not much point in using the dictionary.)
|
|
|
|
# What Enum() must do is generate a new type encapsulating the
|
|
# provided list/dictionary so that specific values of the parameter
|
|
# can be instances of that type. We define two hidden internal
|
|
# classes (_ListEnum and _DictEnum) to serve as base classes, then
|
|
# derive the new type from the appropriate base class on the fly.
|
|
|
|
|
|
# Base class for list-based Enum types.
|
|
class _ListEnum(object):
|
|
# Constructor. Value must be a member of the type's map list.
|
|
def __init__(self, value):
|
|
if value in self.map:
|
|
self.value = value
|
|
self.index = self.map.index(value)
|
|
else:
|
|
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
|
|
% (value, self.map)
|
|
|
|
# Generate printable string version of value.
|
|
def __str__(self):
|
|
return str(self.value)
|
|
|
|
class _DictEnum(object):
|
|
# Constructor. Value must be a key in the type's map dictionary.
|
|
def __init__(self, value):
|
|
if value in self.map:
|
|
self.value = value
|
|
self.index = self.map[value]
|
|
else:
|
|
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
|
|
% (value, self.map.keys())
|
|
|
|
# Generate printable string version of value.
|
|
def __str__(self):
|
|
return str(self.value)
|
|
|
|
# Enum metaclass... calling Enum(foo) generates a new type (class)
|
|
# that derives from _ListEnum or _DictEnum as appropriate.
|
|
class Enum(type):
|
|
# counter to generate unique names for generated classes
|
|
counter = 1
|
|
|
|
def __new__(cls, map):
|
|
if isinstance(map, dict):
|
|
base = _DictEnum
|
|
keys = map.keys()
|
|
elif isinstance(map, list):
|
|
base = _ListEnum
|
|
keys = map
|
|
else:
|
|
raise TypeError, "Enum map must be list or dict (got %s)" % map
|
|
classname = "Enum%04d" % Enum.counter
|
|
Enum.counter += 1
|
|
# New class derives from selected base, and gets a 'map'
|
|
# attribute containing the specified list or dict.
|
|
return type.__new__(cls, classname, (base,), { 'map': map })
|
|
|
|
|
|
#
|
|
# "Constants"... handy aliases for various values.
|
|
#
|
|
|
|
# For compatibility with C++ bool constants.
|
|
false = False
|
|
true = True
|
|
|
|
# Some memory range specifications use this as a default upper bound.
|
|
MAX_ADDR = 2**64 - 1
|
|
|
|
# For power-of-two sizing, e.g. 64*K gives an integer value 65536.
|
|
K = 1024
|
|
M = K*K
|
|
G = K*M
|
|
|
|
#####################################################################
|
|
|
|
# Munge an arbitrary Python code string to get it to execute (mostly
|
|
# dealing with indentation). Stolen from isa_parser.py... see
|
|
# comments there for a more detailed description.
|
|
def fixPythonIndentation(s):
|
|
# get rid of blank lines first
|
|
s = re.sub(r'(?m)^\s*\n', '', s);
|
|
if (s != '' and re.match(r'[ \t]', s[0])):
|
|
s = 'if 1:\n' + s
|
|
return s
|
|
|
|
# Hook to generate C++ parameter code.
|
|
def gen_sim_code(file):
|
|
for objname in sim_object_list:
|
|
print >> file, eval("%s._sim_code()" % objname)
|
|
|
|
# The final hook to generate .ini files. Called from configuration
|
|
# script once config is built.
|
|
def instantiate(*objs):
|
|
for obj in objs:
|
|
obj._instantiate()
|
|
|
|
|