gem5/cpu/base_dyn_inst.cc
Kevin Lim f15e492375 Steps towards setting up the infrastructure to allow the new CPU model to work in full system mode.
The major change is renaming the old ExecContext to CPUExecContext, and creating two new classes, ExecContext (an abstract class), and ProxyExecContext (a templated class that derives from ExecContext).

Code outside of the CPU continues to use ExecContext as normal (other than not being able to access variables within the XC).  The CPU uses the CPUExecContext, or however else it stores its own state.  It then creates a ProxyExecContext, templated on the class used to hold its state.  This proxy is passed to any code outside of the CPU that needs to access the XC.  This allows code outside of the CPU to use the ExecContext interface to access any state needed, without knowledge of how that state is laid out.

Note that these changes will not compile without the accompanying revision to automatically rename the shadow registers.

SConscript:
    Include new file, cpu_exec_context.cc.
arch/alpha/alpha_linux_process.cc:
arch/alpha/alpha_memory.cc:
arch/alpha/alpha_tru64_process.cc:
arch/alpha/arguments.cc:
arch/alpha/isa/decoder.isa:
arch/alpha/stacktrace.cc:
arch/alpha/vtophys.cc:
base/remote_gdb.cc:
cpu/intr_control.cc:
    Avoid directly accessing objects within the XC.
arch/alpha/ev5.cc:
    Avoid directly accessing objects within the XC.

    KernelStats have been moved to the BaseCPU instead of the XC.
arch/alpha/isa_traits.hh:
    Remove clearIprs().  It wasn't used very often and it did not work well with the proxy ExecContext.
cpu/base.cc:
    Place kernel stats within the BaseCPU instead of the ExecContext.

    For now comment out the profiling code sampling until its exact location is decided upon.
cpu/base.hh:
    Kernel stats are now in the BaseCPU instead of the ExecContext.
cpu/base_dyn_inst.cc:
cpu/base_dyn_inst.hh:
cpu/memtest/memtest.cc:
cpu/memtest/memtest.hh:
    Changes to support rename of old ExecContext to CPUExecContext.  See changeset for more details.
cpu/exetrace.cc:
    Remove unneeded include of exec_context.hh.
cpu/intr_control.hh:
cpu/o3/alpha_cpu_builder.cc:
    Remove unneeded include of exec_context.hh
cpu/o3/alpha_cpu.hh:
cpu/o3/alpha_cpu_impl.hh:
cpu/o3/cpu.cc:
cpu/o3/cpu.hh:
cpu/simple/cpu.cc:
cpu/simple/cpu.hh:
    Changes to support rename of old ExecContext to CPUExecContext.  See changeset for more details.

    Also avoid accessing anything directly from the XC.
cpu/pc_event.cc:
    Avoid accessing objects directly from the XC.
dev/tsunami_cchip.cc:
    Avoid accessing objects directly within the XC>
kern/freebsd/freebsd_system.cc:
kern/linux/linux_system.cc:
kern/linux/linux_threadinfo.hh:
kern/tru64/dump_mbuf.cc:
kern/tru64/tru64.hh:
kern/tru64/tru64_events.cc:
sim/syscall_emul.cc:
sim/syscall_emul.hh:
    Avoid accessing objects directly within the XC.
kern/kernel_stats.cc:
kern/kernel_stats.hh:
    Kernel stats no longer exist within the XC.
kern/system_events.cc:
    Avoid accessing objects directly within the XC.  Also kernel stats are now in the BaseCPU.
sim/process.cc:
sim/process.hh:
    Avoid accessing regs directly within an ExecContext.  Instead use a CPUExecContext to initialize the registers and copy them over.
cpu/cpu_exec_context.cc:
    Rename old ExecContext to CPUExecContext.  This is used by the old CPU models to store any necessary architectural state.  Also include the ProxyExecContext, which is used to access the CPUExecContext's state in code outside of the CPU.
cpu/cpu_exec_context.hh:
    Rename old ExecContext to CPUExecContext.  This is used by the old CPU models to store any necessary architectural state.  Also include the ProxyExecContext, which is used to access the CPUExecContext's state in code outside of the CPU.

    Remove kernel stats from the ExecContext.
sim/pseudo_inst.cc:
    Kernel stats now live within the CPU.

    Avoid accessing objects directly within the XC.

--HG--
rename : cpu/exec_context.cc => cpu/cpu_exec_context.cc
rename : cpu/exec_context.hh => cpu/cpu_exec_context.hh
extra : convert_revision : a75393a8945c80cca225b5e9d9c22a16609efb85
2006-03-04 15:18:40 -05:00

364 lines
9.7 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_BASE_DYN_INST_CC__
#define __CPU_BASE_DYN_INST_CC__
#include <iostream>
#include <string>
#include <sstream>
#include "base/cprintf.hh"
#include "base/trace.hh"
#include "arch/alpha/faults.hh"
#include "cpu/exetrace.hh"
#include "mem/mem_req.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/o3/alpha_impl.hh"
#include "cpu/o3/alpha_cpu.hh"
using namespace std;
#define NOHASH
#ifndef NOHASH
#include "base/hashmap.hh"
unsigned int MyHashFunc(const BaseDynInst *addr)
{
unsigned a = (unsigned)addr;
unsigned hash = (((a >> 14) ^ ((a >> 2) & 0xffff))) & 0x7FFFFFFF;
return hash;
}
typedef m5::hash_map<const BaseDynInst *, const BaseDynInst *, MyHashFunc> my_hash_t;
my_hash_t thishash;
#endif
template <class Impl>
BaseDynInst<Impl>::BaseDynInst(MachInst machInst, Addr inst_PC,
Addr pred_PC, InstSeqNum seq_num,
FullCPU *cpu)
: staticInst(machInst), traceData(NULL), cpu(cpu), cpuXC(cpu->cpuXCBase())
{
seqNum = seq_num;
PC = inst_PC;
nextPC = PC + sizeof(MachInst);
predPC = pred_PC;
initVars();
}
template <class Impl>
BaseDynInst<Impl>::BaseDynInst(StaticInstPtr &_staticInst)
: staticInst(_staticInst), traceData(NULL)
{
initVars();
}
template <class Impl>
void
BaseDynInst<Impl>::initVars()
{
effAddr = MemReq::inval_addr;
physEffAddr = MemReq::inval_addr;
readyRegs = 0;
completed = false;
canIssue = false;
issued = false;
executed = false;
canCommit = false;
squashed = false;
squashedInIQ = false;
eaCalcDone = false;
blockingInst = false;
recoverInst = false;
// Eventually make this a parameter.
threadNumber = 0;
// Also make this a parameter, or perhaps get it from xc or cpu.
asid = 0;
// Initialize the fault to be unimplemented opcode.
fault = UnimplementedOpcodeFault;
++instcount;
DPRINTF(FullCPU, "DynInst: Instruction created. Instcount=%i\n",
instcount);
}
template <class Impl>
BaseDynInst<Impl>::~BaseDynInst()
{
--instcount;
DPRINTF(FullCPU, "DynInst: Instruction destroyed. Instcount=%i\n",
instcount);
}
template <class Impl>
void
BaseDynInst<Impl>::prefetch(Addr addr, unsigned flags)
{
// This is the "functional" implementation of prefetch. Not much
// happens here since prefetches don't affect the architectural
// state.
// Generate a MemReq so we can translate the effective address.
MemReqPtr req = new MemReq(addr, cpuXC->getProxy(), 1, flags);
req->asid = asid;
// Prefetches never cause faults.
fault = NoFault;
// note this is a local, not BaseDynInst::fault
Fault trans_fault = cpuXC->translateDataReadReq(req);
if (trans_fault == NoFault && !(req->flags & UNCACHEABLE)) {
// It's a valid address to cacheable space. Record key MemReq
// parameters so we can generate another one just like it for
// the timing access without calling translate() again (which
// might mess up the TLB).
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
} else {
// Bogus address (invalid or uncacheable space). Mark it by
// setting the eff_addr to InvalidAddr.
effAddr = physEffAddr = MemReq::inval_addr;
}
/**
* @todo
* Replace the disjoint functional memory with a unified one and remove
* this hack.
*/
#if !FULL_SYSTEM
req->paddr = req->vaddr;
#endif
if (traceData) {
traceData->setAddr(addr);
}
}
template <class Impl>
void
BaseDynInst<Impl>::writeHint(Addr addr, int size, unsigned flags)
{
// Need to create a MemReq here so we can do a translation. This
// will casue a TLB miss trap if necessary... not sure whether
// that's the best thing to do or not. We don't really need the
// MemReq otherwise, since wh64 has no functional effect.
MemReqPtr req = new MemReq(addr, cpuXC->getProxy(), size, flags);
req->asid = asid;
fault = cpuXC->translateDataWriteReq(req);
if (fault == NoFault && !(req->flags & UNCACHEABLE)) {
// Record key MemReq parameters so we can generate another one
// just like it for the timing access without calling translate()
// again (which might mess up the TLB).
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
} else {
// ignore faults & accesses to uncacheable space... treat as no-op
effAddr = physEffAddr = MemReq::inval_addr;
}
storeSize = size;
storeData = 0;
}
/**
* @todo Need to find a way to get the cache block size here.
*/
template <class Impl>
Fault
BaseDynInst<Impl>::copySrcTranslate(Addr src)
{
MemReqPtr req = new MemReq(src, cpuXC->getProxy(), 64);
req->asid = asid;
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(req);
if (fault == NoFault) {
cpuXC->copySrcAddr = src;
cpuXC->copySrcPhysAddr = req->paddr;
} else {
cpuXC->copySrcAddr = 0;
cpuXC->copySrcPhysAddr = 0;
}
return fault;
}
/**
* @todo Need to find a way to get the cache block size here.
*/
template <class Impl>
Fault
BaseDynInst<Impl>::copy(Addr dest)
{
uint8_t data[64];
FunctionalMemory *mem = cpuXC->mem;
assert(cpuXC->copySrcPhysAddr || cpuXC->misspeculating());
MemReqPtr req = new MemReq(dest, cpuXC->getProxy(), 64);
req->asid = asid;
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(req);
if (fault == NoFault) {
Addr dest_addr = req->paddr;
// Need to read straight from memory since we have more than 8 bytes.
req->paddr = cpuXC->copySrcPhysAddr;
mem->read(req, data);
req->paddr = dest_addr;
mem->write(req, data);
}
return fault;
}
template <class Impl>
void
BaseDynInst<Impl>::dump()
{
cprintf("T%d : %#08d `", threadNumber, PC);
cout << staticInst->disassemble(PC);
cprintf("'\n");
}
template <class Impl>
void
BaseDynInst<Impl>::dump(std::string &outstring)
{
std::ostringstream s;
s << "T" << threadNumber << " : 0x" << PC << " "
<< staticInst->disassemble(PC);
outstring = s.str();
}
#if 0
template <class Impl>
Fault
BaseDynInst<Impl>::mem_access(mem_cmd cmd, Addr addr, void *p, int nbytes)
{
Fault fault;
// check alignments, even speculative this test should always pass
if ((nbytes & nbytes - 1) != 0 || (addr & nbytes - 1) != 0) {
for (int i = 0; i < nbytes; i++)
((char *) p)[i] = 0;
// I added the following because according to the comment above,
// we should never get here. The comment lies
#if 0
panic("unaligned access. Cycle = %n", curTick);
#endif
return NoFault;
}
MemReqPtr req = new MemReq(addr, thread, nbytes);
switch(cmd) {
case Read:
fault = spec_mem->read(req, (uint8_t *)p);
break;
case Write:
fault = spec_mem->write(req, (uint8_t *)p);
if (fault != NoFault)
break;
specMemWrite = true;
storeSize = nbytes;
switch(nbytes) {
case sizeof(uint8_t):
*(uint8_t)&storeData = (uint8_t *)p;
break;
case sizeof(uint16_t):
*(uint16_t)&storeData = (uint16_t *)p;
break;
case sizeof(uint32_t):
*(uint32_t)&storeData = (uint32_t *)p;
break;
case sizeof(uint64_t):
*(uint64_t)&storeData = (uint64_t *)p;
break;
}
break;
default:
fault = MachineCheckFault;
break;
}
trace_mem(fault, cmd, addr, p, nbytes);
return fault;
}
#endif
template <class Impl>
bool
BaseDynInst<Impl>::eaSrcsReady()
{
// For now I am assuming that src registers 1..n-1 are the ones that the
// EA calc depends on. (i.e. src reg 0 is the source of the data to be
// stored)
for (int i = 1; i < numSrcRegs(); ++i)
{
if (!_readySrcRegIdx[i])
return false;
}
return true;
}
// Forward declaration
template class BaseDynInst<AlphaSimpleImpl>;
template <>
int
BaseDynInst<AlphaSimpleImpl>::instcount = 0;
#endif // __CPU_BASE_DYN_INST_CC__