gem5/src/arch/arm/insts/vfp.hh

405 lines
11 KiB
C++

/*
* Copyright (c) 2010 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#ifndef __ARCH_ARM_INSTS_VFP_HH__
#define __ARCH_ARM_INSTS_VFP_HH__
#include "arch/arm/insts/misc.hh"
#include "arch/arm/miscregs.hh"
#include <fenv.h>
enum VfpMicroMode {
VfpNotAMicroop,
VfpMicroop,
VfpFirstMicroop,
VfpLastMicroop
};
template<class T>
static inline void
setVfpMicroFlags(VfpMicroMode mode, T &flags)
{
switch (mode) {
case VfpMicroop:
flags[StaticInst::IsMicroop] = true;
break;
case VfpFirstMicroop:
flags[StaticInst::IsMicroop] =
flags[StaticInst::IsFirstMicroop] = true;
break;
case VfpLastMicroop:
flags[StaticInst::IsMicroop] =
flags[StaticInst::IsLastMicroop] = true;
break;
case VfpNotAMicroop:
break;
}
if (mode == VfpMicroop || mode == VfpFirstMicroop) {
flags[StaticInst::IsDelayedCommit] = true;
}
}
enum FeExceptionBit
{
FeDivByZero = FE_DIVBYZERO,
FeInexact = FE_INEXACT,
FeInvalid = FE_INVALID,
FeOverflow = FE_OVERFLOW,
FeUnderflow = FE_UNDERFLOW,
FeAllExceptions = FE_ALL_EXCEPT
};
enum FeRoundingMode
{
FeRoundDown = FE_DOWNWARD,
FeRoundNearest = FE_TONEAREST,
FeRoundZero = FE_TOWARDZERO,
FeRoundUpward = FE_UPWARD
};
enum VfpRoundingMode
{
VfpRoundNearest = 0,
VfpRoundUpward = 1,
VfpRoundDown = 2,
VfpRoundZero = 3
};
static inline uint64_t
vfpFpSToFixed(float val, bool isSigned, bool half, uint8_t imm)
{
fesetround(FeRoundZero);
val = val * powf(2.0, imm);
__asm__ __volatile__("" : "=m" (val) : "m" (val));
feclearexcept(FeAllExceptions);
if (isSigned) {
if (half) {
if ((double)val < (int16_t)(1 << 15)) {
feraiseexcept(FeInvalid);
return (int16_t)(1 << 15);
}
if ((double)val > (int16_t)mask(15)) {
feraiseexcept(FeInvalid);
return (int16_t)mask(15);
}
return (int16_t)val;
} else {
if ((double)val < (int32_t)(1 << 31)) {
feraiseexcept(FeInvalid);
return (int32_t)(1 << 31);
}
if ((double)val > (int32_t)mask(31)) {
feraiseexcept(FeInvalid);
return (int32_t)mask(31);
}
return (int32_t)val;
}
} else {
if (half) {
if ((double)val < 0) {
feraiseexcept(FeInvalid);
return 0;
}
if ((double)val > (mask(16))) {
feraiseexcept(FeInvalid);
return mask(16);
}
return (uint16_t)val;
} else {
if ((double)val < 0) {
feraiseexcept(FeInvalid);
return 0;
}
if ((double)val > (mask(32))) {
feraiseexcept(FeInvalid);
return mask(32);
}
return (uint32_t)val;
}
}
}
static inline float
vfpUFixedToFpS(uint32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = (uint16_t)val;
return val / powf(2.0, imm);
}
static inline float
vfpSFixedToFpS(int32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = sext<16>(val & mask(16));
return val / powf(2.0, imm);
}
static inline uint64_t
vfpFpDToFixed(double val, bool isSigned, bool half, uint8_t imm)
{
fesetround(FeRoundZero);
val = val * pow(2.0, imm);
__asm__ __volatile__("" : "=m" (val) : "m" (val));
feclearexcept(FeAllExceptions);
if (isSigned) {
if (half) {
if (val < (int16_t)(1 << 15)) {
feraiseexcept(FeInvalid);
return (int16_t)(1 << 15);
}
if (val > (int16_t)mask(15)) {
feraiseexcept(FeInvalid);
return (int16_t)mask(15);
}
return (int16_t)val;
} else {
if (val < (int32_t)(1 << 31)) {
feraiseexcept(FeInvalid);
return (int32_t)(1 << 31);
}
if (val > (int32_t)mask(31)) {
feraiseexcept(FeInvalid);
return (int32_t)mask(31);
}
return (int32_t)val;
}
} else {
if (half) {
if (val < 0) {
feraiseexcept(FeInvalid);
return 0;
}
if (val > mask(16)) {
feraiseexcept(FeInvalid);
return mask(16);
}
return (uint16_t)val;
} else {
if (val < 0) {
feraiseexcept(FeInvalid);
return 0;
}
if (val > mask(32)) {
feraiseexcept(FeInvalid);
return mask(32);
}
return (uint32_t)val;
}
}
}
static inline double
vfpUFixedToFpD(uint32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = (uint16_t)val;
return val / pow(2.0, imm);
}
static inline double
vfpSFixedToFpD(int32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = sext<16>(val & mask(16));
return val / pow(2.0, imm);
}
typedef int VfpSavedState;
static inline VfpSavedState
prepVfpFpscr(FPSCR fpscr)
{
int roundingMode = fegetround();
feclearexcept(FeAllExceptions);
switch (fpscr.rMode) {
case VfpRoundNearest:
fesetround(FeRoundNearest);
break;
case VfpRoundUpward:
fesetround(FeRoundUpward);
break;
case VfpRoundDown:
fesetround(FeRoundDown);
break;
case VfpRoundZero:
fesetround(FeRoundZero);
break;
}
return roundingMode;
}
static inline FPSCR
setVfpFpscr(FPSCR fpscr, VfpSavedState state)
{
int exceptions = fetestexcept(FeAllExceptions);
if (exceptions & FeInvalid) {
fpscr.ioc = 1;
}
if (exceptions & FeDivByZero) {
fpscr.dzc = 1;
}
if (exceptions & FeOverflow) {
fpscr.ofc = 1;
}
if (exceptions & FeUnderflow) {
fpscr.ufc = 1;
}
if (exceptions & FeInexact) {
fpscr.ixc = 1;
}
fesetround(state);
return fpscr;
}
class VfpMacroOp : public PredMacroOp
{
public:
static bool
inScalarBank(IntRegIndex idx)
{
return (idx % 32) < 8;
}
protected:
bool wide;
VfpMacroOp(const char *mnem, ExtMachInst _machInst,
OpClass __opClass, bool _wide) :
PredMacroOp(mnem, _machInst, __opClass), wide(_wide)
{}
IntRegIndex
addStride(IntRegIndex idx, unsigned stride)
{
if (wide) {
stride *= 2;
}
unsigned offset = idx % 8;
idx = (IntRegIndex)(idx - offset);
offset += stride;
idx = (IntRegIndex)(idx + (offset % 8));
return idx;
}
void
nextIdxs(IntRegIndex &dest, IntRegIndex &op1, IntRegIndex &op2)
{
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
assert(!inScalarBank(dest));
dest = addStride(dest, stride);
op1 = addStride(op1, stride);
if (!inScalarBank(op2)) {
op2 = addStride(op2, stride);
}
}
void
nextIdxs(IntRegIndex &dest, IntRegIndex &op1)
{
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
assert(!inScalarBank(dest));
dest = addStride(dest, stride);
if (!inScalarBank(op1)) {
op1 = addStride(op1, stride);
}
}
void
nextIdxs(IntRegIndex &dest)
{
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
assert(!inScalarBank(dest));
dest = addStride(dest, stride);
}
};
class VfpRegRegOp : public RegRegOp
{
protected:
VfpRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, IntRegIndex _op1,
VfpMicroMode mode = VfpNotAMicroop) :
RegRegOp(mnem, _machInst, __opClass, _dest, _op1)
{
setVfpMicroFlags(mode, flags);
}
};
class VfpRegImmOp : public RegImmOp
{
protected:
VfpRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, uint64_t _imm,
VfpMicroMode mode = VfpNotAMicroop) :
RegImmOp(mnem, _machInst, __opClass, _dest, _imm)
{
setVfpMicroFlags(mode, flags);
}
};
class VfpRegRegImmOp : public RegRegImmOp
{
protected:
VfpRegRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, IntRegIndex _op1,
uint64_t _imm, VfpMicroMode mode = VfpNotAMicroop) :
RegRegImmOp(mnem, _machInst, __opClass, _dest, _op1, _imm)
{
setVfpMicroFlags(mode, flags);
}
};
class VfpRegRegRegOp : public RegRegRegOp
{
protected:
VfpRegRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, IntRegIndex _op1, IntRegIndex _op2,
VfpMicroMode mode = VfpNotAMicroop) :
RegRegRegOp(mnem, _machInst, __opClass, _dest, _op1, _op2)
{
setVfpMicroFlags(mode, flags);
}
};
#endif //__ARCH_ARM_INSTS_VFP_HH__