gem5/cpu/ozone/cpu_impl.hh
Kevin Lim 21df09cf7a Fixes for ozone CPU to successfully boot and run linux.
cpu/base_dyn_inst.hh:
    Remove snoop function (did not mean to commit it).
cpu/ozone/back_end_impl.hh:
    Set instruction as having its result ready, not completed.
cpu/ozone/cpu.hh:
    Fixes for store conditionals.  Use an additional lock addr list to make sure that the access is valid.  I don't know if this is fully necessary, but it gives me a peace of mind (at some performance cost).
    Make sure to schedule for cycles(1) and not just 1 cycle in the future as tick = 1ps.
    Also support the new Checker.
cpu/ozone/cpu_builder.cc:
    Add parameter for maxOutstandingMemOps so it can be set through the config.
    Also add in the checker.  Right now it's a BaseCPU simobject, but that may change in the future.
cpu/ozone/cpu_impl.hh:
    Add support for the checker.  For now there's a dynamic cast to convert the simobject passed back from the builder to the proper Checker type.  It's ugly, but only happens at startup, and is probably a justified use of dynamic cast.

    Support switching out/taking over from other CPUs.

    Correct indexing problem for float registers.
cpu/ozone/dyn_inst.hh:
    Add ability for instructions to wait on memory instructions in addition to source register instructions.  This is needed for memory dependence predictors and memory barriers.
cpu/ozone/dyn_inst_impl.hh:
    Support waiting on memory operations.
    Use "resultReady" to differentiate an instruction having its registers produced vs being totally completed.
cpu/ozone/front_end.hh:
    Support switching out.
    Also record if an interrupt is pending.
cpu/ozone/front_end_impl.hh:
    Support switching out.  Also support stalling the front end if an interrupt is pending.
cpu/ozone/lw_back_end.hh:
    Add checker in.
    Support switching out.
    Support memory barriers.
cpu/ozone/lw_back_end_impl.hh:
    Lots of changes to get things to work right.
    Faults, traps, interrupts all wait until all stores have written back (important).
    Memory barriers are supported, as is the general ability for instructions to be dependent on other memory instructions.
cpu/ozone/lw_lsq.hh:
    Support switching out.
    Also use store writeback events in all cases, not just dcache misses.
cpu/ozone/lw_lsq_impl.hh:
    Support switching out.
    Also use store writeback events in all cases, not just dcache misses.
    Support the checker CPU.  Marks instructions as completed once the functional access is done (which has to be done for the checker to be able to verify results).
cpu/ozone/simple_params.hh:
    Add max outstanding mem ops parameter.
python/m5/objects/OzoneCPU.py:
    Add max outstanding mem ops, checker.

--HG--
extra : convert_revision : f4d408e1bb1f25836a097b6abe3856111e950c59
2006-05-11 19:18:36 -04:00

1242 lines
31 KiB
C++

/*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cstdio>
#include <cstdlib>
#include "arch/isa_traits.hh" // For MachInst
#include "base/trace.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/checker/exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/ozone/cpu.hh"
#include "cpu/quiesce_event.hh"
#include "cpu/static_inst.hh"
#include "mem/base_mem.hh"
#include "mem/mem_interface.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#if FULL_SYSTEM
#include "arch/faults.hh"
#include "arch/alpha/osfpal.hh"
#include "arch/alpha/tlb.hh"
#include "arch/vtophys.hh"
#include "base/callback.hh"
#include "base/remote_gdb.hh"
#include "cpu/profile.hh"
#include "kern/kernel_stats.hh"
#include "mem/functional/memory_control.hh"
#include "mem/functional/physical.hh"
#include "sim/faults.hh"
#include "sim/sim_events.hh"
#include "sim/sim_exit.hh"
#include "sim/system.hh"
#else // !FULL_SYSTEM
#include "mem/functional/functional.hh"
#include "sim/process.hh"
#endif // FULL_SYSTEM
using namespace TheISA;
template <class Impl>
template<typename T>
void
OzoneCPU<Impl>::trace_data(T data) {
if (traceData) {
traceData->setData(data);
}
}
template <class Impl>
OzoneCPU<Impl>::TickEvent::TickEvent(OzoneCPU *c, int w)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w)
{
}
template <class Impl>
void
OzoneCPU<Impl>::TickEvent::process()
{
cpu->tick();
}
template <class Impl>
const char *
OzoneCPU<Impl>::TickEvent::description()
{
return "OzoneCPU tick event";
}
/*
template <class Impl>
OzoneCPU<Impl>::ICacheCompletionEvent::ICacheCompletionEvent(OzoneCPU *_cpu)
: Event(&mainEventQueue),
cpu(_cpu)
{
}
template <class Impl>
void
OzoneCPU<Impl>::ICacheCompletionEvent::process()
{
cpu->processICacheCompletion();
}
template <class Impl>
const char *
OzoneCPU<Impl>::ICacheCompletionEvent::description()
{
return "OzoneCPU I-cache completion event";
}
template <class Impl>
OzoneCPU<Impl>::DCacheCompletionEvent::
DCacheCompletionEvent(OzoneCPU *_cpu,
DynInstPtr &_inst,
DCacheCompEventIt &_dcceIt)
: Event(&mainEventQueue),
cpu(_cpu),
inst(_inst),
dcceIt(_dcceIt)
{
this->setFlags(Event::AutoDelete);
}
template <class Impl>
void
OzoneCPU<Impl>::DCacheCompletionEvent::process()
{
inst->setCompleted();
// Maybe remove the EA from the list of addrs?
cpu->eaList.clearAddr(inst->seqNum, inst->getEA());
cpu->dCacheCompList.erase(this->dcceIt);
}
template <class Impl>
const char *
OzoneCPU<Impl>::DCacheCompletionEvent::description()
{
return "OzoneCPU D-cache completion event";
}
*/
template <class Impl>
OzoneCPU<Impl>::OzoneCPU(Params *p)
#if FULL_SYSTEM
: BaseCPU(p), thread(this, 0, p->mem), tickEvent(this, p->width), mem(p->mem),
#else
: BaseCPU(p), thread(this, 0, p->workload[0], 0), tickEvent(this, p->width),
mem(p->workload[0]->getMemory()),
#endif
comm(5, 5)
{
if (p->checker) {
BaseCPU *temp_checker = p->checker;
checker = dynamic_cast<Checker<DynInstPtr> *>(temp_checker);
} else {
checker = NULL;
}
frontEnd = new FrontEnd(p);
backEnd = new BackEnd(p);
_status = Idle;
if (checker) {
checker->setMemory(mem);
#if FULL_SYSTEM
checker->setSystem(p->system);
#endif
checkerXC = new CheckerExecContext<OzoneXC>(&ozoneXC, checker);
thread.xcProxy = checkerXC;
xcProxy = checkerXC;
} else {
thread.xcProxy = &ozoneXC;
xcProxy = &ozoneXC;
}
thread.inSyscall = false;
ozoneXC.cpu = this;
ozoneXC.thread = &thread;
thread.setStatus(ExecContext::Suspended);
#if FULL_SYSTEM
// xc = new ExecContext(this, 0, p->system, p->itb, p->dtb, p->mem);
/***** All thread state stuff *****/
thread.cpu = this;
thread.tid = 0;
thread.mem = p->mem;
thread.quiesceEvent = new EndQuiesceEvent(xcProxy);
system = p->system;
itb = p->itb;
dtb = p->dtb;
memctrl = p->system->memctrl;
physmem = p->system->physmem;
if (p->profile) {
thread.profile = new FunctionProfile(p->system->kernelSymtab);
// @todo: This might be better as an ExecContext instead of OzoneXC
Callback *cb =
new MakeCallback<OzoneXC,
&OzoneXC::dumpFuncProfile>(&ozoneXC);
registerExitCallback(cb);
}
// let's fill with a dummy node for now so we don't get a segfault
// on the first cycle when there's no node available.
static ProfileNode dummyNode;
thread.profileNode = &dummyNode;
thread.profilePC = 3;
#else
// xc = new ExecContext(this, /* thread_num */ 0, p->workload[0], /* asid */ 0);
thread.cpu = this;
thread.tid = 0;
thread.process = p->workload[0];
// thread.mem = thread.process->getMemory();
thread.asid = 0;
#endif // !FULL_SYSTEM
/*
icacheInterface = p->icache_interface;
dcacheInterface = p->dcache_interface;
cacheMemReq = new MemReq();
cacheMemReq->xc = xc;
cacheMemReq->asid = 0;
cacheMemReq->data = new uint8_t[64];
*/
numInst = 0;
startNumInst = 0;
/* numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
issueWidth = p->issueWidth;
*/
execContexts.push_back(xcProxy);
frontEnd->setCPU(this);
backEnd->setCPU(this);
frontEnd->setXC(xcProxy);
backEnd->setXC(xcProxy);
frontEnd->setThreadState(&thread);
backEnd->setThreadState(&thread);
frontEnd->setCommBuffer(&comm);
backEnd->setCommBuffer(&comm);
frontEnd->setBackEnd(backEnd);
backEnd->setFrontEnd(frontEnd);
decoupledFrontEnd = p->decoupledFrontEnd;
globalSeqNum = 1;
checkInterrupts = false;
for (int i = 0; i < TheISA::TotalNumRegs; ++i) {
thread.renameTable[i] = new DynInst(this);
thread.renameTable[i]->setResultReady();
}
frontEnd->renameTable.copyFrom(thread.renameTable);
backEnd->renameTable.copyFrom(thread.renameTable);
#if !FULL_SYSTEM
// pTable = p->pTable;
#endif
lockFlag = 0;
DPRINTF(OzoneCPU, "OzoneCPU: Created Ozone cpu object.\n");
}
template <class Impl>
OzoneCPU<Impl>::~OzoneCPU()
{
}
/*
template <class Impl>
void
OzoneCPU<Impl>::copyFromXC()
{
for (int i = 0; i < TheISA::TotalNumRegs; ++i) {
if (i < TheISA::NumIntRegs) {
renameTable[i]->setIntResult(xc->readIntReg(i));
} else if (i < TheISA::NumFloatRegs) {
renameTable[i]->setDoubleResult(xc->readFloatRegDouble(i));
}
}
DPRINTF(OzoneCPU, "Func Exe inst is: %i\n", xc->func_exe_inst);
backEnd->funcExeInst = xc->func_exe_inst;
// PC = xc->readPC();
// nextPC = xc->regs.npc;
}
template <class Impl>
void
OzoneCPU<Impl>::copyToXC()
{
for (int i = 0; i < TheISA::TotalNumRegs; ++i) {
if (i < TheISA::NumIntRegs) {
xc->setIntReg(i, renameTable[i]->readIntResult());
} else if (i < TheISA::NumFloatRegs) {
xc->setFloatRegDouble(i, renameTable[i]->readDoubleResult());
}
}
this->xc->regs.miscRegs.fpcr = this->regFile.miscRegs[tid].fpcr;
this->xc->regs.miscRegs.uniq = this->regFile.miscRegs[tid].uniq;
this->xc->regs.miscRegs.lock_flag = this->regFile.miscRegs[tid].lock_flag;
this->xc->regs.miscRegs.lock_addr = this->regFile.miscRegs[tid].lock_addr;
xc->func_exe_inst = backEnd->funcExeInst;
xc->regs.pc = PC;
xc->regs.npc = nextPC;
}
*/
template <class Impl>
void
OzoneCPU<Impl>::switchOut(Sampler *sampler)
{
// Front end needs state from back end, so switch out the back end first.
backEnd->switchOut();
frontEnd->switchOut();
_status = SwitchedOut;
if (tickEvent.scheduled())
tickEvent.squash();
sampler->signalSwitched();
}
template <class Impl>
void
OzoneCPU<Impl>::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
backEnd->takeOverFrom();
frontEnd->takeOverFrom();
assert(!tickEvent.scheduled());
// @todo: Fix hardcoded number
// Clear out any old information in time buffer.
for (int i = 0; i < 6; ++i) {
comm.advance();
}
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active &&
_status != Running) {
_status = Running;
tickEvent.schedule(curTick);
}
}
}
template <class Impl>
void
OzoneCPU<Impl>::activateContext(int thread_num, int delay)
{
// Eventually change this in SMT.
assert(thread_num == 0);
// assert(xcProxy);
assert(_status == Idle);
notIdleFraction++;
scheduleTickEvent(delay);
_status = Running;
thread._status = ExecContext::Active;
frontEnd->wakeFromQuiesce();
}
template <class Impl>
void
OzoneCPU<Impl>::suspendContext(int thread_num)
{
// Eventually change this in SMT.
assert(thread_num == 0);
// assert(xcProxy);
// @todo: Figure out how to initially set the status properly so this is running.
// assert(_status == Running);
notIdleFraction--;
unscheduleTickEvent();
_status = Idle;
}
template <class Impl>
void
OzoneCPU<Impl>::deallocateContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
template <class Impl>
void
OzoneCPU<Impl>::haltContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
template <class Impl>
void
OzoneCPU<Impl>::regStats()
{
using namespace Stats;
BaseCPU::regStats();
thread.numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
thread.numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
quiesceCycles
.name(name() + ".quiesce_cycles")
.desc("Number of cycles spent in quiesce")
;
idleFraction = constant(1.0) - notIdleFraction;
frontEnd->regStats();
backEnd->regStats();
}
template <class Impl>
void
OzoneCPU<Impl>::resetStats()
{
startNumInst = numInst;
notIdleFraction = (_status != Idle);
}
template <class Impl>
void
OzoneCPU<Impl>::init()
{
BaseCPU::init();
/*
copyFromXC();
// ALso copy over PC/nextPC. This isn't normally copied in "copyFromXC()"
// so that the XC doesn't mess up the PC when returning from a syscall.
PC = xc->readPC();
nextPC = xc->regs.npc;
*/
// Mark this as in syscall so it won't need to squash
thread.inSyscall = true;
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
frontEnd->renameTable.copyFrom(thread.renameTable);
backEnd->renameTable.copyFrom(thread.renameTable);
thread.inSyscall = false;
}
template <class Impl>
void
OzoneCPU<Impl>::serialize(std::ostream &os)
{
// At this point, all DCacheCompEvents should be processed.
BaseCPU::serialize(os);
SERIALIZE_ENUM(_status);
nameOut(os, csprintf("%s.xc", name()));
ozoneXC.serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
}
template <class Impl>
void
OzoneCPU<Impl>::unserialize(Checkpoint *cp, const std::string &section)
{
BaseCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
ozoneXC.unserialize(cp, csprintf("%s.xc", section));
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
template <class Impl>
Fault
OzoneCPU<Impl>::copySrcTranslate(Addr src)
{
panic("Copy not implemented!\n");
return NoFault;
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & TheISA::PageMask) != ((src + blk_size) & TheISA::PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address
Fault fault = xc->translateDataReadReq(memReq);
assert(fault != Alignment_Fault);
if (fault == NoFault) {
xc->copySrcAddr = src;
xc->copySrcPhysAddr = memReq->paddr + offset;
} else {
xc->copySrcAddr = 0;
xc->copySrcPhysAddr = 0;
}
return fault;
#endif
}
template <class Impl>
Fault
OzoneCPU<Impl>::copy(Addr dest)
{
panic("Copy not implemented!\n");
return NoFault;
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(xc->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & TheISA::PageMask) != ((dest + blk_size) & TheISA::PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = xc->translateDataWriteReq(memReq);
assert(fault != Alignment_Fault);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = xc->copySrcPhysAddr;
xc->mem->read(memReq, data);
memReq->paddr = dest_addr;
xc->mem->write(memReq, data);
if (dcacheInterface) {
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = xc->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
dcacheInterface->access(memReq);
}
}
return fault;
#endif
}
#if FULL_SYSTEM
template <class Impl>
Addr
OzoneCPU<Impl>::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
/*
template <class Impl>
void
OzoneCPU<Impl>::processICacheCompletion()
{
switch (status()) {
case IcacheMiss:
DPRINTF(OzoneCPU, "OzoneCPU: Finished Icache miss.\n");
icacheStallCycles += curTick - lastIcacheStall;
_status = IcacheMissComplete;
cacheBlkValid = true;
// scheduleTickEvent(1);
break;
case SwitchedOut:
// If this CPU has been switched out due to sampling/warm-up,
// ignore any further status changes (e.g., due to cache
// misses outstanding at the time of the switch).
return;
default:
panic("OzoneCPU::processICacheCompletion: bad state");
break;
}
}
*/
#if FULL_SYSTEM
template <class Impl>
void
OzoneCPU<Impl>::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
// if (thread._status == ExecContext::Suspended) {
if (_status == Idle) {
DPRINTF(IPI,"Suspended Processor awoke\n");
// thread.activate();
// Hack for now. Otherwise might have to go through the xcProxy, or
// I need to figure out what's the right thing to call.
activateContext(thread.tid, 1);
}
}
#endif // FULL_SYSTEM
/* start simulation, program loaded, processor precise state initialized */
template <class Impl>
void
OzoneCPU<Impl>::tick()
{
DPRINTF(OzoneCPU, "\n\nOzoneCPU: Ticking cpu.\n");
_status = Running;
thread.renameTable[ZeroReg]->setIntResult(0);
thread.renameTable[ZeroReg+TheISA::FP_Base_DepTag]->
setDoubleResult(0.0);
// General code flow:
// Check for any interrupts. Handle them if I do have one.
// Check if I have a need to fetch a new cache block. Either a bit could be
// set by functions indicating that I need to fetch a new block, or I could
// hang onto the last PC of the last cache block I fetched and compare the
// current PC to that. Setting a bit seems nicer but may be more error
// prone.
// Scan through the IQ to figure out if there's anything I can issue/execute
// Might need something close to the FU Pools to tell what instructions
// I can issue. How to handle loads and stores vs other insts?
// Extremely slow way: find first inst that can possibly issue; if it's a
// load or a store, then iterate through load/store queue.
// If I can't find instructions to execute and I've got room in the IQ
// (which is just a counter), then grab a few instructions out of the cache
// line buffer until I either run out or can execute up until my limit.
numCycles++;
traceData = NULL;
// Fault fault = NoFault;
#if 0 // FULL_SYSTEM
if (checkInterrupts && check_interrupts() && !inPalMode() &&
status() != IcacheMissComplete) {
int ipl = 0;
int summary = 0;
checkInterrupts = false;
if (readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
// Is this method so that if the interrupts are switched over from
// another CPU they'll still be handled?
// uint64_t interrupts = cpuXC->cpu->intr_status();
uint64_t interrupts = intr_status();
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
if (readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (ipl && ipl > readMiscReg(IPR_IPLR)) {
setMiscReg(IPR_ISR, summary);
setMiscReg(IPR_INTID, ipl);
Fault(new InterruptFault)->invoke(xc);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
readMiscReg(IPR_IPLR), ipl, summary);
}
}
#endif
// Make call to ISA to ensure 0 register semantics...actually because the
// DynInsts will generally be the register file, this should only have to
// happen when the xc is actually written to (during a syscall or something)
// maintain $r0 semantics
// assert(renameTable[ZeroReg]->readIntResult() == 0);
#ifdef TARGET_ALPHA
// assert(renameTable[ZeroReg]->readDoubleResult() == 0);
#endif // TARGET_ALPHA
comm.advance();
frontEnd->tick();
backEnd->tick();
// Do this here? For now the front end will control the PC.
// PC = nextPC;
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
if (!tickEvent.scheduled() && _status == Running)
tickEvent.schedule(curTick + cycles(1));
}
template <class Impl>
void
OzoneCPU<Impl>::squashFromXC()
{
thread.inSyscall = true;
backEnd->generateXCEvent();
}
#if !FULL_SYSTEM
template <class Impl>
void
OzoneCPU<Impl>::syscall()
{
// Not sure this copy is needed, depending on how the XC proxy is made.
thread.renameTable.copyFrom(backEnd->renameTable);
thread.inSyscall = true;
thread.funcExeInst++;
DPRINTF(OzoneCPU, "FuncExeInst: %i\n", thread.funcExeInst);
thread.process->syscall(xcProxy);
thread.funcExeInst--;
thread.inSyscall = false;
frontEnd->renameTable.copyFrom(thread.renameTable);
backEnd->renameTable.copyFrom(thread.renameTable);
}
template <class Impl>
void
OzoneCPU<Impl>::setSyscallReturn(SyscallReturn return_value, int tid)
{
// check for error condition. Alpha syscall convention is to
// indicate success/failure in reg a3 (r19) and put the
// return value itself in the standard return value reg (v0).
if (return_value.successful()) {
// no error
thread.renameTable[SyscallSuccessReg]->setIntResult(0);
thread.renameTable[ReturnValueReg]->setIntResult(return_value.value());
} else {
// got an error, return details
thread.renameTable[SyscallSuccessReg]->setIntResult((IntReg) -1);
thread.renameTable[ReturnValueReg]->setIntResult(-return_value.value());
}
}
#else
template <class Impl>
Fault
OzoneCPU<Impl>::hwrei()
{
// Need to move this to ISA code
// May also need to make this per thread
/*
if (!inPalMode())
return new UnimplementedOpcodeFault;
thread.setNextPC(thread.readMiscReg(AlphaISA::IPR_EXC_ADDR));
*/
lockFlag = false;
lockAddrList.clear();
kernelStats->hwrei();
checkInterrupts = true;
// FIXME: XXX check for interrupts? XXX
return NoFault;
}
template <class Impl>
void
OzoneCPU<Impl>::processInterrupts()
{
// Check for interrupts here. For now can copy the code that
// exists within isa_fullsys_traits.hh. Also assume that thread 0
// is the one that handles the interrupts.
// Check if there are any outstanding interrupts
//Handle the interrupts
int ipl = 0;
int summary = 0;
checkInterrupts = false;
if (thread.readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (thread.readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (thread.readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = intr_status();
if (interrupts) {
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
}
if (ipl && ipl > thread.readMiscReg(IPR_IPLR)) {
thread.setMiscReg(IPR_ISR, summary);
thread.setMiscReg(IPR_INTID, ipl);
// @todo: Make this more transparent
if (checker) {
checkerXC->setMiscReg(IPR_ISR, summary);
checkerXC->setMiscReg(IPR_INTID, ipl);
}
Fault fault = new InterruptFault;
fault->invoke(thread.getXCProxy());
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
thread.readMiscReg(IPR_IPLR), ipl, summary);
}
}
template <class Impl>
bool
OzoneCPU<Impl>::simPalCheck(int palFunc)
{
// Need to move this to ISA code
// May also need to make this per thread
this->kernelStats->callpal(palFunc, xcProxy);
switch (palFunc) {
case PAL::halt:
haltContext(thread.tid);
if (--System::numSystemsRunning == 0)
new SimExitEvent("all cpus halted");
break;
case PAL::bpt:
case PAL::bugchk:
if (system->breakpoint())
return false;
break;
}
return true;
}
#endif
template <class Impl>
BaseCPU *
OzoneCPU<Impl>::OzoneXC::getCpuPtr()
{
return cpu;
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setCpuId(int id)
{
cpu->cpuId = id;
thread->cpuId = id;
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setStatus(Status new_status)
{
// cpu->_status = new_status;
thread->_status = new_status;
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::activate(int delay)
{
cpu->activateContext(thread->tid, delay);
}
/// Set the status to Suspended.
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::suspend()
{
cpu->suspendContext(thread->tid);
}
/// Set the status to Unallocated.
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::deallocate()
{
cpu->deallocateContext(thread->tid);
}
/// Set the status to Halted.
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::halt()
{
cpu->haltContext(thread->tid);
}
#if FULL_SYSTEM
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::dumpFuncProfile()
{ }
#endif
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::takeOverFrom(ExecContext *old_context)
{
// some things should already be set up
assert(getMemPtr() == old_context->getMemPtr());
#if FULL_SYSTEM
assert(getSystemPtr() == old_context->getSystemPtr());
#else
assert(getProcessPtr() == old_context->getProcessPtr());
#endif
// copy over functional state
setStatus(old_context->status());
copyArchRegs(old_context);
setCpuId(old_context->readCpuId());
#if !FULL_SYSTEM
setFuncExeInst(old_context->readFuncExeInst());
#endif
// storeCondFailures = 0;
cpu->lockFlag = false;
old_context->setStatus(ExecContext::Unallocated);
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::regStats(const std::string &name)
{ }
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::serialize(std::ostream &os)
{ }
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::unserialize(Checkpoint *cp, const std::string &section)
{ }
#if FULL_SYSTEM
template <class Impl>
Event *
OzoneCPU<Impl>::OzoneXC::getQuiesceEvent()
{
return thread->quiesceEvent;
}
template <class Impl>
Tick
OzoneCPU<Impl>::OzoneXC::readLastActivate()
{
return thread->lastActivate;
}
template <class Impl>
Tick
OzoneCPU<Impl>::OzoneXC::readLastSuspend()
{
return thread->lastSuspend;
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::profileClear()
{
if (thread->profile)
thread->profile->clear();
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::profileSample()
{
if (thread->profile)
thread->profile->sample(thread->profileNode, thread->profilePC);
}
#endif
template <class Impl>
int
OzoneCPU<Impl>::OzoneXC::getThreadNum()
{
return thread->tid;
}
// Also somewhat obnoxious. Really only used for the TLB fault.
template <class Impl>
TheISA::MachInst
OzoneCPU<Impl>::OzoneXC::getInst()
{
return thread->inst;
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::copyArchRegs(ExecContext *xc)
{
thread->PC = xc->readPC();
thread->nextPC = xc->readNextPC();
cpu->frontEnd->setPC(thread->PC);
cpu->frontEnd->setNextPC(thread->nextPC);
for (int i = 0; i < TheISA::TotalNumRegs; ++i) {
if (i < TheISA::FP_Base_DepTag) {
thread->renameTable[i]->setIntResult(xc->readIntReg(i));
} else if (i < (TheISA::FP_Base_DepTag + TheISA::NumFloatRegs)) {
int fp_idx = i - TheISA::FP_Base_DepTag;
thread->renameTable[i]->setDoubleResult(
xc->readFloatRegDouble(fp_idx));
}
}
#if !FULL_SYSTEM
thread->funcExeInst = xc->readFuncExeInst();
#endif
// Need to copy the XC values into the current rename table,
// copy the misc regs.
thread->regs.miscRegs.copyMiscRegs(xc);
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::clearArchRegs()
{
panic("Unimplemented!");
}
template <class Impl>
uint64_t
OzoneCPU<Impl>::OzoneXC::readIntReg(int reg_idx)
{
return thread->renameTable[reg_idx]->readIntResult();
}
template <class Impl>
float
OzoneCPU<Impl>::OzoneXC::readFloatRegSingle(int reg_idx)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
return thread->renameTable[idx]->readFloatResult();
}
template <class Impl>
double
OzoneCPU<Impl>::OzoneXC::readFloatRegDouble(int reg_idx)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
return thread->renameTable[idx]->readDoubleResult();
}
template <class Impl>
uint64_t
OzoneCPU<Impl>::OzoneXC::readFloatRegInt(int reg_idx)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
return thread->renameTable[idx]->readIntResult();
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setIntReg(int reg_idx, uint64_t val)
{
thread->renameTable[reg_idx]->setIntResult(val);
if (!thread->inSyscall) {
cpu->squashFromXC();
}
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setFloatRegSingle(int reg_idx, float val)
{
panic("Unimplemented!");
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setFloatRegDouble(int reg_idx, double val)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
thread->renameTable[idx]->setDoubleResult(val);
if (!thread->inSyscall) {
cpu->squashFromXC();
}
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setFloatRegInt(int reg_idx, uint64_t val)
{
panic("Unimplemented!");
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setPC(Addr val)
{
thread->PC = val;
cpu->frontEnd->setPC(val);
if (!thread->inSyscall) {
cpu->squashFromXC();
}
}
template <class Impl>
void
OzoneCPU<Impl>::OzoneXC::setNextPC(Addr val)
{
thread->nextPC = val;
cpu->frontEnd->setNextPC(val);
if (!thread->inSyscall) {
cpu->squashFromXC();
}
}
template <class Impl>
TheISA::MiscReg
OzoneCPU<Impl>::OzoneXC::readMiscReg(int misc_reg)
{
return thread->regs.miscRegs.readReg(misc_reg);
}
template <class Impl>
TheISA::MiscReg
OzoneCPU<Impl>::OzoneXC::readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return thread->regs.miscRegs.readRegWithEffect(misc_reg,
fault, this);
}
template <class Impl>
Fault
OzoneCPU<Impl>::OzoneXC::setMiscReg(int misc_reg, const MiscReg &val)
{
// Needs to setup a squash event unless we're in syscall mode
Fault ret_fault = thread->regs.miscRegs.setReg(misc_reg, val);
if (!thread->inSyscall) {
cpu->squashFromXC();
}
return ret_fault;
}
template <class Impl>
Fault
OzoneCPU<Impl>::OzoneXC::setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
// Needs to setup a squash event unless we're in syscall mode
Fault ret_fault = thread->regs.miscRegs.setRegWithEffect(misc_reg, val,
this);
if (!thread->inSyscall) {
cpu->squashFromXC();
}
return ret_fault;
}