gem5/ext/dsent/model/timing_graph/ElectricalTimingNode.cc
Nilay Vaish e8ed7b1d1b ext: add the source code for DSENT
This patch adds a tool called DSENT to the ext/ directory.  DSENT
is a tool that models power and area for on-chip networks.  The next
patch adds a script for using the tool.
2014-10-11 15:02:23 -05:00

174 lines
4.4 KiB
C++

#include "model/timing_graph/ElectricalTimingNode.h"
#include "model/timing_graph/ElectricalLoad.h"
namespace DSENT
{
// Set the optical node initial visited num
const int ElectricalTimingNode::TIMING_NODE_INIT_VISITED_NUM = 0;
ElectricalTimingNode::ElectricalTimingNode(const String& instance_name_, ElectricalModel* model_)
: m_instance_name_(instance_name_), m_model_(model_), m_false_path_(false), m_crit_path_(-1),
m_visited_num_(ElectricalTimingNode::TIMING_NODE_INIT_VISITED_NUM), m_delay_left_(0.0)
{
m_upstream_nodes_ = new vector<ElectricalTimingNode*>();
m_downstream_nodes_ = new vector<ElectricalTimingNode*>();
}
ElectricalTimingNode::~ElectricalTimingNode()
{
delete m_upstream_nodes_;
delete m_downstream_nodes_;
}
double ElectricalTimingNode::getMaxUpstreamRes() const
{
double max_res = 0.0;
for(unsigned int i = 0; i < m_upstream_nodes_->size(); ++i)
{
double res = m_upstream_nodes_->at(i)->getMaxUpstreamRes();
if(max_res < res)
{
max_res = res;
}
}
return max_res;
}
double ElectricalTimingNode::getTotalDownstreamCap() const
{
double cap_sum = 0;
for(unsigned int i = 0; i < m_downstream_nodes_->size(); ++i)
{
cap_sum += m_downstream_nodes_->at(i)->getTotalDownstreamCap();
}
return cap_sum;
}
vector<ElectricalTimingNode*>* ElectricalTimingNode::getUpstreamNodes() const
{
return m_upstream_nodes_;
}
vector<ElectricalTimingNode*>* ElectricalTimingNode::getDownstreamNodes() const
{
return m_downstream_nodes_;
}
const String& ElectricalTimingNode::getInstanceName() const
{
return m_instance_name_;
}
ElectricalModel* ElectricalTimingNode::getModel()
{
return m_model_;
}
bool ElectricalTimingNode::isDriver() const
{
return false;
}
bool ElectricalTimingNode::isNet() const
{
return false;
}
bool ElectricalTimingNode::isLoad() const
{
return false;
}
const ElectricalModel* ElectricalTimingNode::getModel() const
{
return (const ElectricalModel*) m_model_;
}
void ElectricalTimingNode::addDownstreamNode(ElectricalTimingNode* node_)
{
m_downstream_nodes_->push_back(node_);
node_->m_upstream_nodes_->push_back(this);
return;
}
void ElectricalTimingNode::setFalsePath(bool false_path_)
{
m_false_path_ = false_path_;
return;
}
bool ElectricalTimingNode::getFalsePath() const
{
return m_false_path_;
}
//-------------------------------------------------------------------------
// Functions for delay optimization
//-------------------------------------------------------------------------
// By default, electrical timing nodes cannot be sized up/down
bool ElectricalTimingNode::hasMaxDrivingStrength() const
{
return true;
}
bool ElectricalTimingNode::hasMinDrivingStrength() const
{
return true;
}
void ElectricalTimingNode::increaseDrivingStrength()
{
return;
}
void ElectricalTimingNode::decreaseDrivingStrength()
{
return;
}
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Node variables for critical path delay calculations
//-------------------------------------------------------------------------
void ElectricalTimingNode::setCritPath(int crit_path_)
{
m_crit_path_ = crit_path_;
return;
}
int ElectricalTimingNode::getCritPath() const
{
return m_crit_path_;
}
void ElectricalTimingNode::setVisitedNum(int visited_num_)
{
m_visited_num_ = visited_num_;
return;
}
int ElectricalTimingNode::getVisitedNum() const
{
return m_visited_num_;
}
void ElectricalTimingNode::setDelayLeft(double delay_left_)
{
m_delay_left_ = delay_left_;
}
double ElectricalTimingNode::getDelayLeft() const
{
return m_delay_left_;
}
//-------------------------------------------------------------------------
} // namespace DSENT