gem5/ext/dsent/model/optical/LaserSource.cc
Nilay Vaish e8ed7b1d1b ext: add the source code for DSENT
This patch adds a tool called DSENT to the ext/ directory.  DSENT
is a tool that models power and area for on-chip networks.  The next
patch adds a script for using the tool.
2014-10-11 15:02:23 -05:00

106 lines
3.8 KiB
C++

#include "model/optical/LaserSource.h"
#include "model/optical_graph/OpticalWaveguide.h"
#include "model/optical_graph/OpticalWavelength.h"
#include "model/optical_graph/OpticalLaser.h"
#include "model/optical_graph/OpticalGraph.h"
namespace DSENT
{
LaserSource::LaserSource(const String& instance_name_, const TechModel* tech_model_)
: OpticalModel(instance_name_, tech_model_)
{
initParameters();
initProperties();
}
LaserSource::~LaserSource()
{}
void LaserSource::initParameters()
{
addParameterName("OutStart");
addParameterName("OutEnd");
addParameterName("MaxDetectors");
return;
}
void LaserSource::initProperties()
{
addPropertyName("OptUtil", 1.0);
return;
}
void LaserSource::constructModel()
{
// Create Area result
Result* area_result = new AtomicResult("Photonic");
addAreaResult(area_result);
// Create NDD power result
Result* power_result = new AtomicResult("Laser");
addNddPowerResult(power_result);
// Get parameters
WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd"));
// Create optical ports
createOpticalOutputPort( "Out", laser_wavelengths);
// Create the filter
createLaser( "Laser", laser_wavelengths);
OpticalLaser* laser = getLaser("Laser");
// Connect the laser to the output
laser->addDownstreamNode(getWaveguide("Out"));
}
void LaserSource::updateModel()
{
// Get properties
double laser_efficiency = getTechModel()->get("Laser->CW->Efficiency").toDouble();
double laser_area = getTechModel()->get("Laser->CW->Area").toDouble();
double laser_diode_loss = getTechModel()->get("Laser->CW->LaserDiodeLoss");
// Get parameters
WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd"));
unsigned int number_wavelengths = laser_wavelengths.second - laser_wavelengths.first + 1;
// Update losses
OpticalLaser* laser = getLaser("Laser");
laser->setLoss(laser_diode_loss);
laser->setEfficiency(laser_efficiency);
// Update area
getAreaResult("Photonic")->setValue(laser_area * number_wavelengths);
}
void LaserSource::evaluateModel()
{
// Get parameters
unsigned int max_detectors = getParameter("MaxDetectors").toUInt();
WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd"));
// Get properties
double opt_util = getProperty("OptUtil");
// Create optical graph object
OpticalGraph* optical_graph = new OpticalGraph("LaserTrace", this);
// Ask optical graph object to perform power optimization
bool success = optical_graph->performPowerOpt(getLaser("Laser"), laser_wavelengths, max_detectors, opt_util);
if (!success)
{
Log::printLine(std::cerr, "[Warning] " + getInstanceName() +
" -> Wavelengths contains data paths with no possible modulator configurations!");
}
// Trace the wavelengths the laser is outputting to find the output
// power needed by the laser
OpticalWavelength* wavelength = optical_graph->traceWavelength(laser_wavelengths, getLaser("Laser"));
// Calculate the power needed by the wavelength
double laser_power = wavelength->getLaserPower(max_detectors);
// Calculate NDD power
getNddPowerResult("Laser")->setValue(laser_power);
delete wavelength;
delete optical_graph;
}
} // namespace DSENT