gem5/ext/dsent/configs/router.cfg
Nilay Vaish e8ed7b1d1b ext: add the source code for DSENT
This patch adds a tool called DSENT to the ext/ directory.  DSENT
is a tool that models power and area for on-chip networks.  The next
patch adds a script for using the tool.
2014-10-11 15:02:23 -05:00

131 lines
5.8 KiB
INI

# Name of model to be built and evaluated
ModelName = Router
# Query string to choose what to evaluate (use '\' to enable multiline config)
QueryString = \
Energy>>Router:WriteBuffer@0 \
Energy>>Router:ReadBuffer@0 \
Energy>>Router:TraverseCrossbar->Multicast1@0 \
Energy>>Router:ArbitrateSwitch->ArbitrateStage1@0 \
Energy>>Router:ArbitrateSwitch->ArbitrateStage2@0 \
Energy>>Router:DistributeClock@0 \
NddPower>>Router:Leakage@1 \
Area>>Router:Active@1 \
# Injection rate (# flits per cycle per port), assuming that the router is not
# saturated
InjectionRate = 0.3
# Evaluation string
EvaluateString = \
ejection_rate = $(NumberInputPorts) * $(InjectionRate) / $(NumberOutputPorts); \
buf_rd_dynamic = $(Energy>>Router:ReadBuffer) * $(Frequency); \
buf_wr_dynamic = $(Energy>>Router:WriteBuffer) * $(Frequency); \
buf_static = $(NddPower>>Router->InputPort:Leakage) * $(NumberInputPorts) + ($(NddPower>>Router->PipelineReg0:Leakage) + $(NddPower>>Router->PipelineReg1:Leakage)) * $(NumberInputPorts) * $(NumberBitsPerFlit); \
xbar_o_dynamic = $(Energy>>Router:TraverseCrossbar->Multicast1) * $(Frequency); \
xbar_static = $(NddPower>>Router->Crossbar:Leakage) + $(NddPower>>Router->PipelineReg2_0:Leakage) * $(NumberOutputPorts) * $(NumberBitsPerFlit); \
sa_o_dynamic = ($(Energy>>Router:ArbitrateSwitch->ArbitrateStage1) + $(Energy>>Router:ArbitrateSwitch->ArbitrateStage2)) * $(Frequency); \
sa_static = $(NddPower>>Router->SwitchAllocator:Leakage); \
clock_o_dynamic = $(Energy>>Router:DistributeClock) * $(Frequency); \
clock_static = $(NddPower>>Router->ClockTree:Leakage); \
buffer_dynamic = buf_wr_dynamic * $(InjectionRate) * $(NumberInputPorts) + buf_rd_dynamic * ejection_rate * $(NumberOutputPorts); \
buffer_leakage = buf_static; \
xbar_dynamic = xbar_o_dynamic * ejection_rate * $(NumberOutputPorts); \
xbar_leakage = xbar_static; \
sa_dynamic = sa_o_dynamic * ejection_rate * $(NumberOutputPorts); \
sa_leakage = sa_static; \
clock_dynamic = clock_o_dynamic; \
clock_leakage = clock_static; \
total_dynamic = buffer_dynamic + xbar_dynamic + sa_dynamic + clock_dynamic; \
total_leakage = buffer_leakage + xbar_leakage + sa_leakage + clock_leakage; \
buf_area = ($(Area>>Router->InputPort:Active) + ($(Area>>Router->PipelineReg0:Active) + $(Area>>Router->PipelineReg1:Active)) * $(NumberBitsPerFlit)) * $(NumberInputPorts); \
xbar_area = $(Area>>Router->Crossbar:Active) + $(Area>>Router->Crossbar_Sel_DFF:Active) + $(Area>>Router->PipelineReg2_0:Active) * $(NumberBitsPerFlit) * $(NumberOutputPorts); \
sa_area = $(Area>>Router->SwitchAllocator:Active); \
other_area = $(Area>>Router->ClockTree:Active); \
print "Buffer:"; \
print " Dynamic power: " buffer_dynamic; \
print " Leakage power: " buffer_leakage; \
print "Crossbar:"; \
print " Dynamic power: " xbar_dynamic; \
print " Leakage power: " xbar_leakage; \
print "Switch allocator:"; \
print " Dynamic power: " sa_dynamic; \
print " Leakage power: " sa_leakage; \
print "Clock:"; \
print " Dynamic power: " clock_dynamic; \
print " Leakage power: " clock_leakage; \
print "Total:"; \
print " Dynamic power: " total_dynamic; \
print " Leakage power: " $(NddPower>>Router:Leakage); \
print "Area:"; \
print " Buffer: " buf_area; \
print " Crossbar: " xbar_area; \
print " Switch allocator: " sa_area; \
print " Other: " other_area; \
# Technology file (see other models in tech/models)
ElectricalTechModelFilename = tech/tech_models/Bulk45LVT.model
###############################################################################
# Timing optimization
###############################################################################
# True if want to perform timing optimization; otherwise, false.
IsPerformTimingOptimization = true
# Nets that the timing optimizer starts from
TimingOptimization->StartNetNames = [*]
# Operating frequency (Hz)
Frequency = 1.0e9
###############################################################################
# Model specifications
###############################################################################
# Number of input ports
NumberInputPorts = 5
# Number of output ports
NumberOutputPorts = 5
# Flit width (bit)
NumberBitsPerFlit = 64
# In this example, we define 2 virtual networks (message classes), VN1 and VN2.
# VN1 VN2
# Number of VCs 2 3
# Number of buffers / VC 4 5
#
# So in total, there are (2 * 4) + (3 * 5) = 23 flit buffers
#
# Number of virtual networks (number of message classes)
NumberVirtualNetworks = 2
# Number of virtual channels per virtual network
NumberVirtualChannelsPerVirtualNetwork = [2, 3]
# Number of buffers per virtual channel
NumberBuffersPerVirtualChannel = [4, 5]
# InputPort
# ---------
# buffer model
InputPort->BufferModel = DFFRAM
# Crossbar
# --------
# crossbar model
CrossbarModel = MultiplexerCrossbar
# Switch allocator
# ----------------
# arbiter model
SwitchAllocator->ArbiterModel = MatrixArbiter
# Clock tree
# ----------
# clock tree model
ClockTreeModel = BroadcastHTree
# number of levels
ClockTree->NumberLevels = 5
# wire layer
ClockTree->WireLayer = Global
# wire width multiplier
ClockTree->WireWidthMultiplier = 1.0