gem5/src/mem/ruby/buffers/MessageBuffer.cc
Brad Beckmann e7f2da517a ruby: Stall and wait input messages instead of recycling
This patch allows messages to be stalled in their input buffers and wait
until a corresponding address changes state.  In order to make this work,
all in_ports must be ranked in order of dependence and those in_ports that
may unblock an address, must wake up the stalled messages.  Alot of this
complexity is handled in slicc and the specification files simply
annotate the in_ports.

--HG--
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/StallAndWaitStatementAST.py
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/WakeUpDependentsStatementAST.py
2010-08-20 11:46:14 -07:00

417 lines
13 KiB
C++

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "base/cprintf.hh"
#include "base/stl_helpers.hh"
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
using m5::stl_helpers::operator<<;
MessageBuffer::MessageBuffer(const string &name)
{
m_msg_counter = 0;
m_consumer_ptr = NULL;
m_ordering_set = false;
m_strict_fifo = true;
m_size = 0;
m_max_size = -1;
m_last_arrival_time = 0;
m_randomization = true;
m_size_last_time_size_checked = 0;
m_time_last_time_size_checked = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_not_avail_count = 0;
m_priority_rank = 0;
m_name = name;
}
int
MessageBuffer::getSize()
{
if (m_time_last_time_size_checked == g_eventQueue_ptr->getTime()) {
return m_size_last_time_size_checked;
} else {
m_time_last_time_size_checked = g_eventQueue_ptr->getTime();
m_size_last_time_size_checked = m_size;
return m_size;
}
}
bool
MessageBuffer::areNSlotsAvailable(int n)
{
// fast path when message buffers have infinite size
if (m_max_size == -1) {
return true;
}
// determine my correct size for the current cycle
// pop operations shouldn't effect the network's visible size
// until next cycle, but enqueue operations effect the visible
// size immediately
int current_size = max(m_size_at_cycle_start, m_size);
if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) {
// no pops this cycle - m_size is correct
current_size = m_size;
} else {
if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) {
// no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else {
// both pops and enqueues occured this cycle - add new
// enqueued msgs to m_size_at_cycle_start
current_size = m_size_at_cycle_start+m_msgs_this_cycle;
}
}
// now compare the new size with our max size
if (current_size + n <= m_max_size) {
return true;
} else {
DEBUG_MSG(QUEUE_COMP, MedPrio, n);
DEBUG_MSG(QUEUE_COMP, MedPrio, current_size);
DEBUG_MSG(QUEUE_COMP, MedPrio, m_size);
DEBUG_MSG(QUEUE_COMP, MedPrio, m_max_size);
m_not_avail_count++;
return false;
}
}
const MsgPtr
MessageBuffer::getMsgPtrCopy() const
{
assert(isReady());
return m_prio_heap.front().m_msgptr->clone();
}
const Message*
MessageBuffer::peekAtHeadOfQueue() const
{
DEBUG_NEWLINE(QUEUE_COMP, MedPrio);
DEBUG_MSG(QUEUE_COMP, MedPrio,
csprintf("Peeking at head of queue %s time: %d.",
m_name, g_eventQueue_ptr->getTime()));
assert(isReady());
const Message* msg_ptr = m_prio_heap.front().m_msgptr.get();
assert(msg_ptr);
DEBUG_EXPR(QUEUE_COMP, MedPrio, *msg_ptr);
DEBUG_NEWLINE(QUEUE_COMP, MedPrio);
return msg_ptr;
}
// FIXME - move me somewhere else
int
random_time()
{
int time = 1;
time += random() & 0x3; // [0...3]
if ((random() & 0x7) == 0) { // 1 in 8 chance
time += 100 + (random() % 0xf); // 100 + [1...15]
}
return time;
}
void
MessageBuffer::enqueue(MsgPtr message, Time delta)
{
DEBUG_NEWLINE(QUEUE_COMP, HighPrio);
DEBUG_MSG(QUEUE_COMP, HighPrio,
csprintf("enqueue %s time: %d.", m_name,
g_eventQueue_ptr->getTime()));
DEBUG_EXPR(QUEUE_COMP, MedPrio, message);
DEBUG_NEWLINE(QUEUE_COMP, HighPrio);
m_msg_counter++;
m_size++;
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = g_eventQueue_ptr->getTime();
}
m_msgs_this_cycle++;
// ASSERT(m_max_size == -1 || m_size <= m_max_size + 1);
// the plus one is a kluge because of a SLICC issue
if (!m_ordering_set) {
// WARN_EXPR(*this);
WARN_EXPR(m_name);
ERROR_MSG("Ordering property of this queue has not been set");
}
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
//printf ("delta %i \n", delta);
assert(delta>0);
Time current_time = g_eventQueue_ptr->getTime();
Time arrival_time = 0;
if (!RubySystem::getRandomization() || (m_randomization == false)) {
// No randomization
arrival_time = current_time + delta;
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time + random_time();
} else {
arrival_time = current_time + random_time();
}
}
// Check the arrival time
assert(arrival_time > current_time);
if (m_strict_fifo) {
if (arrival_time < m_last_arrival_time) {
WARN_EXPR(*this);
WARN_EXPR(m_name);
WARN_EXPR(current_time);
WARN_EXPR(delta);
WARN_EXPR(arrival_time);
WARN_EXPR(m_last_arrival_time);
ERROR_MSG("FIFO ordering violated");
}
}
m_last_arrival_time = arrival_time;
// compute the delay cycles and set enqueue time
Message* msg_ptr = message.get();
assert(msg_ptr != NULL);
assert(g_eventQueue_ptr->getTime() >= msg_ptr->getLastEnqueueTime() &&
"ensure we aren't dequeued early");
msg_ptr->setDelayedCycles(g_eventQueue_ptr->getTime() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedCycles());
msg_ptr->setLastEnqueueTime(arrival_time);
// Insert the message into the priority heap
MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
m_prio_heap.push_back(thisNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
DEBUG_NEWLINE(QUEUE_COMP, HighPrio);
DEBUG_MSG(QUEUE_COMP, HighPrio,
csprintf("enqueue %s with arrival_time %d cur_time: %d.",
m_name, arrival_time, g_eventQueue_ptr->getTime()));
DEBUG_EXPR(QUEUE_COMP, MedPrio, message);
DEBUG_NEWLINE(QUEUE_COMP, HighPrio);
// Schedule the wakeup
if (m_consumer_ptr != NULL) {
g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, arrival_time);
} else {
WARN_EXPR(*this);
WARN_EXPR(m_name);
ERROR_MSG("No consumer");
}
}
int
MessageBuffer::dequeue_getDelayCycles(MsgPtr& message)
{
int delay_cycles = -1; // null value
dequeue(message);
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::dequeue(MsgPtr& message)
{
DEBUG_MSG(QUEUE_COMP, MedPrio, "dequeue from " + m_name);
message = m_prio_heap.front().m_msgptr;
pop();
DEBUG_EXPR(QUEUE_COMP, MedPrio, message);
}
int
MessageBuffer::dequeue_getDelayCycles()
{
int delay_cycles = -1; // null value
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.front().m_msgptr;
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
dequeue();
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::pop()
{
DEBUG_MSG(QUEUE_COMP, MedPrio, "pop from " + m_name);
assert(isReady());
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_prio_heap.pop_back();
// record previous size and time so the current buffer size isn't
// adjusted until next cycle
if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) {
m_size_at_cycle_start = m_size;
m_time_last_time_pop = g_eventQueue_ptr->getTime();
}
m_size--;
}
void
MessageBuffer::clear()
{
m_prio_heap.clear();
m_msg_counter = 0;
m_size = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void
MessageBuffer::recycle()
{
DEBUG_MSG(QUEUE_COMP, MedPrio, "recycling " + m_name);
assert(isReady());
MessageBufferNode node = m_prio_heap.front();
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
node.m_time = g_eventQueue_ptr->getTime() + m_recycle_latency;
m_prio_heap.back() = node;
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr,
g_eventQueue_ptr->getTime() + m_recycle_latency);
}
void
MessageBuffer::reanalyzeMessages(const Address& addr)
{
DEBUG_MSG(QUEUE_COMP, MedPrio, "reanalyzeMessages " + m_name);
assert(m_stall_msg_map.count(addr) > 0);
//
// Put all stalled messages associated with this address back on the
// prio heap
//
while(!m_stall_msg_map[addr].empty()) {
m_msg_counter++;
MessageBufferNode msgNode(g_eventQueue_ptr->getTime() + 1,
m_msg_counter,
m_stall_msg_map[addr].front());
m_prio_heap.push_back(msgNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, msgNode.m_time);
m_stall_msg_map[addr].pop_front();
}
}
void
MessageBuffer::stallMessage(const Address& addr)
{
DEBUG_MSG(QUEUE_COMP, MedPrio, "stalling " + m_name);
assert(isReady());
assert(addr.getOffset() == 0);
MsgPtr message = m_prio_heap.front().m_msgptr;
pop();
//
// Note: no event is scheduled to analyze the map at a later time.
// Instead the controller is responsible to call reanalyzeMessages when
// these addresses change state.
//
(m_stall_msg_map[addr]).push_back(message);
}
int
MessageBuffer::setAndReturnDelayCycles(MsgPtr msg_ptr)
{
int delay_cycles = -1; // null value
// get the delay cycles of the message at the top of the queue
// this function should only be called on dequeue
// ensure the msg hasn't been enqueued
assert(msg_ptr->getLastEnqueueTime() <= g_eventQueue_ptr->getTime());
msg_ptr->setDelayedCycles(g_eventQueue_ptr->getTime() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedCycles());
delay_cycles = msg_ptr->getDelayedCycles();
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::print(ostream& out) const
{
out << "[MessageBuffer: ";
if (m_consumer_ptr != NULL) {
out << " consumer-yes ";
}
vector<MessageBufferNode> copy(m_prio_heap);
sort_heap(copy.begin(), copy.end(), greater<MessageBufferNode>());
out << copy << "] " << m_name << endl;
}
void
MessageBuffer::printStats(ostream& out)
{
out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter
<< " full:" << m_not_avail_count << endl;
}