gem5/arch/alpha/alpha_memory.cc
Steve Reinhardt 5a1eb9049d Support for Serializable non-SimObject things like events.
Can now serialize & unserialize DmaRequestEvents and DmaTransferEvents.
Also support serialize/unserialize of pointers to SimObjects and
other Serializable objects.

arch/alpha/alpha_memory.cc:
arch/alpha/alpha_memory.hh:
arch/alpha/isa_traits.hh:
cpu/exec_context.cc:
cpu/exec_context.hh:
cpu/simple_cpu/simple_cpu.hh:
dev/alpha_access.h:
dev/alpha_console.cc:
dev/alpha_console.hh:
dev/console.cc:
dev/console.hh:
    unserialize() now takes a Checkpoint* instead of an IniFile*.
cpu/simple_cpu/simple_cpu.cc:
    unserialize() now takes a Checkpoint* instead of an IniFile*.
    Put ExecContext in its own section so its _status fields doesn't conflict.
sim/eventq.cc:
sim/eventq.hh:
    unserialize() now takes a Checkpoint* instead of an IniFile*.
    Events get serialized by the event queue only if they're marked
    as AutoSerialize... others are assumed to be serialized by something
    else (e.g. an owning SimObject) or to not matter.
sim/param.cc:
    Shift 'const' in case T is a ptr type.
sim/serialize.cc:
sim/serialize.hh:
    Define Checkpoint object to encapsulate everything you need to know
    about a checkpoint.  Use it to allow lookups of named Serializable
    objects (and SimObjects) during unserialization.
    unserialize() now takes a Checkpoint* instead of an IniFile*.

--HG--
extra : convert_revision : 8e6baab32405f8f548bb67a097b2f713296537a5
2003-10-29 21:45:39 -08:00

583 lines
14 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sstream>
#include <string>
#include <vector>
#include "base/inifile.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "cpu/exec_context.hh"
#include "sim/builder.hh"
#include "targetarch/alpha_memory.hh"
#include "targetarch/ev5.hh"
using namespace std;
///////////////////////////////////////////////////////////////////////
//
// Alpha TLB
//
AlphaTlb::AlphaTlb(const string &name, int s)
: SimObject(name), size(s), nlu(0)
{
table = new AlphaISA::PTE[size];
memset(table, 0, sizeof(AlphaISA::PTE[size]));
}
AlphaTlb::~AlphaTlb()
{
if (table)
delete [] table;
}
// look up an entry in the TLB
AlphaISA::PTE *
AlphaTlb::lookup(Addr vpn, uint8_t asn) const
{
DPRINTF(TLB, "lookup %#x\n", vpn);
PageTable::const_iterator i = lookupTable.find(vpn);
if (i == lookupTable.end())
return NULL;
while (i->first == vpn) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (vpn == pte->tag && (pte->asma || pte->asn == asn))
return pte;
++i;
}
// not found...
return NULL;
}
void
AlphaTlb::checkCacheability(MemReqPtr req)
{
// in Alpha, cacheability is controlled by upper-level bits of the
// physical address
if (req->paddr & PA_UNCACHED_BIT) {
if (PA_IPR_SPACE(req->paddr)) {
// IPR memory space not implemented
if (!req->xc->misspeculating())
panic("IPR memory space not implemented! PA=%x\n", req->paddr);
} else {
// mark request as uncacheable
req->flags |= UNCACHEABLE;
}
}
}
// insert a new TLB entry
void
AlphaTlb::insert(Addr vaddr, AlphaISA::PTE &pte)
{
if (table[nlu].valid) {
Addr oldvpn = table[nlu].tag;
PageTable::iterator i = lookupTable.find(oldvpn);
if (i == lookupTable.end())
panic("TLB entry not found in lookupTable");
int index;
while ((index = i->second) != nlu) {
if (table[index].tag != oldvpn)
panic("TLB entry not found in lookupTable");
++i;
}
DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn);
lookupTable.erase(i);
}
Addr vpn = VA_VPN(vaddr);
DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vpn, pte.ppn);
table[nlu] = pte;
table[nlu].tag = vpn;
table[nlu].valid = true;
lookupTable.insert(make_pair(vpn, nlu));
nextnlu();
}
void
AlphaTlb::flushAll()
{
memset(table, 0, sizeof(AlphaISA::PTE[size]));
lookupTable.clear();
nlu = 0;
}
void
AlphaTlb::flushProcesses()
{
PageTable::iterator i = lookupTable.begin();
PageTable::iterator end = lookupTable.end();
while (i != end) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (!pte->asma) {
DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn);
pte->valid = false;
lookupTable.erase(i);
}
++i;
}
}
void
AlphaTlb::flushAddr(Addr vaddr, uint8_t asn)
{
Addr vpn = VA_VPN(vaddr);
PageTable::iterator i = lookupTable.find(vpn);
if (i == lookupTable.end())
return;
while (i->first == vpn) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (vpn == pte->tag && (pte->asma || pte->asn == asn)) {
DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vpn, pte->ppn);
// invalidate this entry
pte->valid = false;
lookupTable.erase(i);
}
++i;
}
}
void
AlphaTlb::serialize(ostream &os)
{
SERIALIZE_SCALAR(size);
SERIALIZE_SCALAR(nlu);
for (int i = 0; i < size; i++) {
nameOut(os, csprintf("%s.PTE%d", name(), i));
table[i].serialize(os);
}
}
void
AlphaTlb::unserialize(Checkpoint *cp, const string &section)
{
UNSERIALIZE_SCALAR(size);
UNSERIALIZE_SCALAR(nlu);
for (int i = 0; i < size; i++) {
table[i].unserialize(cp, csprintf("%s.PTE%d", section, i));
if (table[i].valid) {
lookupTable.insert(make_pair(table[i].tag, i));
}
}
}
///////////////////////////////////////////////////////////////////////
//
// Alpha ITB
//
AlphaItb::AlphaItb(const std::string &name, int size)
: AlphaTlb(name, size)
{}
void
AlphaItb::regStats()
{
hits
.name(name() + ".hits")
.desc("ITB hits");
misses
.name(name() + ".misses")
.desc("ITB misses");
acv
.name(name() + ".acv")
.desc("ITB acv");
accesses
.name(name() + ".accesses")
.desc("ITB accesses");
accesses = hits + misses;
}
void
AlphaItb::fault(Addr pc, ExecContext *xc) const
{
uint64_t *ipr = xc->regs.ipr;
if (!xc->misspeculating()) {
ipr[AlphaISA::IPR_ITB_TAG] = pc;
ipr[AlphaISA::IPR_IFAULT_VA_FORM] =
ipr[AlphaISA::IPR_IVPTBR] | (VA_VPN(pc) << 3);
}
}
Fault
AlphaItb::translate(MemReqPtr req) const
{
InternalProcReg *ipr = req->xc->regs.ipr;
if (PC_PAL(req->vaddr)) {
// strip off PAL PC marker (lsb is 1)
req->paddr = (req->vaddr & ~3) & PA_IMPL_MASK;
hits++;
return No_Fault;
}
// verify that this is a good virtual address
if (!validVirtualAddress(req->vaddr)) {
fault(req->vaddr, req->xc);
acv++;
return Itb_Acv_Fault;
}
// Check for "superpage" mapping: when SP<1> is set, and
// VA<42:41> == 2, VA<39:13> maps directly to PA<39:13>.
if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) &&
VA_SPACE(req->vaddr) == 2) {
// only valid in kernel mode
if (ICM_CM(ipr[AlphaISA::IPR_ICM]) != AlphaISA::mode_kernel) {
fault(req->vaddr, req->xc);
acv++;
return Itb_Acv_Fault;
}
req->flags |= PHYSICAL;
}
if (req->flags & PHYSICAL) {
req->paddr = req->vaddr & PA_IMPL_MASK;
} else {
// not a physical address: need to look up pte
AlphaISA::PTE *pte = lookup(VA_VPN(req->vaddr),
DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
if (!pte) {
fault(req->vaddr, req->xc);
misses++;
return Itb_Fault_Fault;
}
req->paddr = PA_PFN2PA(pte->ppn) + VA_POFS(req->vaddr & ~3);
// check permissions for this access
if (!(pte->xre & (1 << ICM_CM(ipr[AlphaISA::IPR_ICM])))) {
// instruction access fault
fault(req->vaddr, req->xc);
acv++;
return Itb_Acv_Fault;
}
}
checkCacheability(req);
hits++;
return No_Fault;
}
///////////////////////////////////////////////////////////////////////
//
// Alpha DTB
//
AlphaDtb::AlphaDtb(const std::string &name, int size)
: AlphaTlb(name, size)
{}
void
AlphaDtb::regStats()
{
read_hits
.name(name() + ".read_hits")
.desc("DTB read hits")
;
read_misses
.name(name() + ".read_misses")
.desc("DTB read misses")
;
read_acv
.name(name() + ".read_acv")
.desc("DTB read access violations")
;
read_accesses
.name(name() + ".read_accesses")
.desc("DTB read accesses")
;
write_hits
.name(name() + ".write_hits")
.desc("DTB write hits")
;
write_misses
.name(name() + ".write_misses")
.desc("DTB write misses")
;
write_acv
.name(name() + ".write_acv")
.desc("DTB write access violations")
;
write_accesses
.name(name() + ".write_accesses")
.desc("DTB write accesses")
;
hits
.name(name() + ".hits")
.desc("DTB hits")
;
misses
.name(name() + ".misses")
.desc("DTB misses")
;
acv
.name(name() + ".acv")
.desc("DTB access violations")
;
accesses
.name(name() + ".accesses")
.desc("DTB accesses")
;
hits = read_hits + write_hits;
misses = read_misses + write_misses;
acv = read_acv + write_acv;
accesses = read_accesses + write_accesses;
}
void
AlphaDtb::fault(Addr vaddr, uint64_t flags, ExecContext *xc) const
{
uint64_t *ipr = xc->regs.ipr;
// set fault address and flags
if (!xc->misspeculating() && !xc->regs.intrlock) {
// set VA register with faulting address
ipr[AlphaISA::IPR_VA] = vaddr;
// set MM_STAT register flags
ipr[AlphaISA::IPR_MM_STAT] = (((xc->regs.opcode & 0x3f) << 11)
| ((xc->regs.ra & 0x1f) << 6)
| (flags & 0x3f));
// set VA_FORM register with faulting formatted address
ipr[AlphaISA::IPR_VA_FORM] =
ipr[AlphaISA::IPR_MVPTBR] | (VA_VPN(vaddr) << 3);
// lock these registers until the VA register is read
xc->regs.intrlock = true;
}
}
Fault
AlphaDtb::translate(MemReqPtr req, bool write) const
{
RegFile *regs = &req->xc->regs;
Addr pc = regs->pc;
InternalProcReg *ipr = regs->ipr;
if (write)
write_accesses++;
else
read_accesses++;
AlphaISA::md_mode_type mode =
(AlphaISA::md_mode_type)DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]);
if (PC_PAL(pc)) {
mode = (req->flags & ALTMODE) ? (AlphaISA::md_mode_type)
(ALT_MODE_AM(ipr[AlphaISA::IPR_ALT_MODE]))
: AlphaISA::mode_kernel;
}
// verify that this is a good virtual address
if (!validVirtualAddress(req->vaddr)) {
fault(req->vaddr,
((write ? MM_STAT_WR_MASK : 0) | MM_STAT_BAD_VA_MASK |
MM_STAT_ACV_MASK),
req->xc);
if (write) { write_acv++; } else { read_acv++; }
return Dtb_Fault_Fault;
}
// Check for "superpage" mapping: when SP<1> is set, and
// VA<42:41> == 2, VA<39:13> maps directly to PA<39:13>.
if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) && VA_SPACE(req->vaddr) == 2) {
// only valid in kernel mode
if (DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]) != AlphaISA::mode_kernel) {
fault(req->vaddr,
((write ? MM_STAT_WR_MASK : 0) | MM_STAT_ACV_MASK),
req->xc);
if (write) { write_acv++; } else { read_acv++; }
return Dtb_Acv_Fault;
}
req->flags |= PHYSICAL;
}
if (req->flags & PHYSICAL) {
req->paddr = req->vaddr & PA_IMPL_MASK;
} else {
// not a physical address: need to look up pte
AlphaISA::PTE *pte = lookup(VA_VPN(req->vaddr),
DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
if (!pte) {
// page fault
fault(req->vaddr,
((write ? MM_STAT_WR_MASK : 0) | MM_STAT_DTB_MISS_MASK),
req->xc);
if (write) { write_misses++; } else { read_misses++; }
return (req->flags & VPTE) ? Pdtb_Miss_Fault : Ndtb_Miss_Fault;
}
req->paddr = PA_PFN2PA(pte->ppn) | VA_POFS(req->vaddr);
if (write) {
if (!(pte->xwe & MODE2MASK(mode))) {
// declare the instruction access fault
fault(req->vaddr, MM_STAT_WR_MASK | MM_STAT_ACV_MASK |
(pte->fonw ? MM_STAT_FONW_MASK : 0),
req->xc);
write_acv++;
return Dtb_Fault_Fault;
}
if (pte->fonw) {
fault(req->vaddr, MM_STAT_WR_MASK | MM_STAT_FONW_MASK,
req->xc);
write_acv++;
return Dtb_Fault_Fault;
}
} else {
if (!(pte->xre & MODE2MASK(mode))) {
fault(req->vaddr,
MM_STAT_ACV_MASK | (pte->fonr ? MM_STAT_FONR_MASK : 0),
req->xc);
read_acv++;
return Dtb_Acv_Fault;
}
if (pte->fonr) {
fault(req->vaddr, MM_STAT_FONR_MASK, req->xc);
read_acv++;
return Dtb_Fault_Fault;
}
}
}
checkCacheability(req);
if (write)
write_hits++;
else
read_hits++;
return No_Fault;
}
AlphaISA::PTE &
AlphaTlb::index()
{
AlphaISA::PTE *pte = &table[nlu];
nextnlu();
return *pte;
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaItb)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(AlphaItb)
BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaItb)
INIT_PARAM_DFLT(size, "TLB size", 48)
END_INIT_SIM_OBJECT_PARAMS(AlphaItb)
CREATE_SIM_OBJECT(AlphaItb)
{
return new AlphaItb(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("AlphaITB", AlphaItb)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDtb)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(AlphaDtb)
BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDtb)
INIT_PARAM_DFLT(size, "TLB size", 64)
END_INIT_SIM_OBJECT_PARAMS(AlphaDtb)
CREATE_SIM_OBJECT(AlphaDtb)
{
return new AlphaDtb(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("AlphaDTB", AlphaDtb)