gem5/cpu/checker/cpu.hh
Kevin Lim c23b23f4e7 Add in checker. Supports dynamically verifying the execution of instructions, as well as limited amount of control path verification. It will verify anything within the program, but anything external (traps, interrupts, XC) it assumes is redirected properly by the CPU. Similarly it assumes the results of store conditionals, uncached loads, and instructions marked as "unverifiable" are correct from the CPU.
base/traceflags.py:
build/SConstruct:
cpu/SConscript:
cpu/cpu_models.py:
    Add in Checker.
cpu/base.cc:
    Add in checker support.  Also XC status starts off as suspended.
cpu/base.hh:
    Add in checker.

--HG--
extra : convert_revision : 091b5cc83e837858adb681ef0137a0beb30bd1b2
2006-05-16 13:59:29 -04:00

336 lines
9.2 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_CHECKER_CPU_HH__
#define __CPU_CHECKER_CPU_HH__
#include <list>
#include <queue>
#include <map>
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/pc_event.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/static_inst.hh"
#include "sim/eventq.hh"
// forward declarations
#if FULL_SYSTEM
class Processor;
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;
class RemoteGDB;
class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM
template <class>
class BaseDynInst;
class ExecContext;
class MemInterface;
class Checkpoint;
class CheckerCPU : public BaseCPU
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
public:
// main simulation loop (one cycle)
virtual void init();
struct Params : public BaseCPU::Params
{
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
FunctionalMemory *mem;
#else
Process *process;
#endif
bool exitOnError;
};
public:
void post_interrupt(int int_num, int index);
CheckerCPU(Params *p);
virtual ~CheckerCPU();
void setMemory(FunctionalMemory *mem);
FunctionalMemory *memPtr;
#if FULL_SYSTEM
void setSystem(System *system);
System *systemPtr;
#endif
public:
// execution context
CPUExecContext *cpuXC;
ExecContext *xcProxy;
AlphaITB *itb;
AlphaDTB *dtb;
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
union Result {
uint64_t integer;
float fp;
double dbl;
};
Result result;
// current instruction
MachInst machInst;
// Refcounted pointer to the one memory request.
MemReqPtr memReq;
// Pointer to the sampler that is telling us to switchover.
// Used to signal the completion of the pipe drain and schedule
// the next switchover
Sampler *sampler;
StaticInstPtr curStaticInst;
// number of simulated instructions
Counter numInst;
Counter startNumInst;
std::queue<int> miscRegIdxs;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntReg(const StaticInst *si, int idx)
{
return cpuXC->readIntReg(si->srcRegIdx(idx));
}
float readFloatRegSingle(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegSingle(reg_idx);
}
double readFloatRegDouble(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegDouble(reg_idx);
}
uint64_t readFloatRegInt(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegInt(reg_idx);
}
void setIntReg(const StaticInst *si, int idx, uint64_t val)
{
cpuXC->setIntReg(si->destRegIdx(idx), val);
result.integer = val;
}
void setFloatRegSingle(const StaticInst *si, int idx, float val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegSingle(reg_idx, val);
result.fp = val;
}
void setFloatRegDouble(const StaticInst *si, int idx, double val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegDouble(reg_idx, val);
result.dbl = val;
}
void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegInt(reg_idx, val);
result.integer = val;
}
uint64_t readPC() { return cpuXC->readPC(); }
void setNextPC(uint64_t val) {
cpuXC->setNextPC(val);
}
MiscReg readMiscReg(int misc_reg)
{
return cpuXC->readMiscReg(misc_reg);
}
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return cpuXC->readMiscRegWithEffect(misc_reg, fault);
}
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
result.integer = val;
miscRegIdxs.push(misc_reg);
return cpuXC->setMiscReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
miscRegIdxs.push(misc_reg);
return cpuXC->setMiscRegWithEffect(misc_reg, val);
}
void recordPCChange(uint64_t val) { changedPC = true; }
void recordNextPCChange(uint64_t val) { changedNextPC = true; }
bool translateInstReq(MemReqPtr &req);
void translateDataWriteReq(MemReqPtr &req);
void translateDataReadReq(MemReqPtr &req);
#if FULL_SYSTEM
Fault hwrei() { return cpuXC->hwrei(); }
int readIntrFlag() { return cpuXC->readIntrFlag(); }
void setIntrFlag(int val) { cpuXC->setIntrFlag(val); }
bool inPalMode() { return cpuXC->inPalMode(); }
void ev5_trap(Fault fault) { fault->invoke(xcProxy); }
bool simPalCheck(int palFunc) { return cpuXC->simPalCheck(palFunc); }
#else
// Assume that the normal CPU's call to syscall was successful.
void syscall() { }
#endif
void handleError()
{
if (exitOnError)
panic("Checker found error!");
}
bool checkFlags(MemReqPtr &req);
ExecContext *xcBase() { return xcProxy; }
CPUExecContext *cpuXCBase() { return cpuXC; }
Result unverifiedResult;
MemReqPtr unverifiedReq;
bool changedPC;
bool willChangePC;
uint64_t newPC;
bool changedNextPC;
bool exitOnError;
InstSeqNum youngestSN;
// std::map<Addr, uint64_t> storeBuff;
// typedef std::map<Addr, uint64_t>::iterator map_it;
};
template <class DynInstPtr>
class Checker : public CheckerCPU
{
public:
Checker(Params *p)
: CheckerCPU(p)
{ }
void switchOut(Sampler *s);
void takeOverFrom(BaseCPU *oldCPU);
void tick(DynInstPtr &inst);
void validateInst(DynInstPtr &inst);
void validateExecution(DynInstPtr &inst);
void validateState();
std::list<DynInstPtr> instList;
typedef typename std::list<DynInstPtr>::iterator InstListIt;
void dumpInsts();
};
#endif // __CPU_CHECKER_CPU_HH__