e2507407b1
Some ISAs (like ARM) relies on hardware page table walkers. For those ISAs, when a TLB miss occurs, initiateTranslation() can return with NoFault but with the translation unfinished. Instructions experiencing a delayed translation due to a hardware page table walk are deferred until the translation completes and kept into the IQ. In order to keep track of them, the IQ has been augmented with a queue of the outstanding delayed memory instructions. When their translation completes, instructions are re-executed (only their initiateAccess() was already executed; their DTB translation is now skipped). The IEW stage has been modified to support such a 2-pass execution.
1517 lines
45 KiB
C++
1517 lines
45 KiB
C++
/*
|
|
* Copyright (c) 2011 ARM Limited
|
|
* All rights reserved.
|
|
*
|
|
* The license below extends only to copyright in the software and shall
|
|
* not be construed as granting a license to any other intellectual
|
|
* property including but not limited to intellectual property relating
|
|
* to a hardware implementation of the functionality of the software
|
|
* licensed hereunder. You may use the software subject to the license
|
|
* terms below provided that you ensure that this notice is replicated
|
|
* unmodified and in its entirety in all distributions of the software,
|
|
* modified or unmodified, in source code or in binary form.
|
|
*
|
|
* Copyright (c) 2004-2006 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Authors: Kevin Lim
|
|
* Korey Sewell
|
|
*/
|
|
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "cpu/o3/fu_pool.hh"
|
|
#include "cpu/o3/inst_queue.hh"
|
|
#include "enums/OpClass.hh"
|
|
#include "params/DerivO3CPU.hh"
|
|
#include "sim/core.hh"
|
|
|
|
using namespace std;
|
|
|
|
template <class Impl>
|
|
InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
|
|
int fu_idx, InstructionQueue<Impl> *iq_ptr)
|
|
: Event(Stat_Event_Pri), inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr),
|
|
freeFU(false)
|
|
{
|
|
this->setFlags(Event::AutoDelete);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::FUCompletion::process()
|
|
{
|
|
iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
|
|
inst = NULL;
|
|
}
|
|
|
|
|
|
template <class Impl>
|
|
const char *
|
|
InstructionQueue<Impl>::FUCompletion::description() const
|
|
{
|
|
return "Functional unit completion";
|
|
}
|
|
|
|
template <class Impl>
|
|
InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
|
|
DerivO3CPUParams *params)
|
|
: cpu(cpu_ptr),
|
|
iewStage(iew_ptr),
|
|
fuPool(params->fuPool),
|
|
numEntries(params->numIQEntries),
|
|
totalWidth(params->issueWidth),
|
|
numPhysIntRegs(params->numPhysIntRegs),
|
|
numPhysFloatRegs(params->numPhysFloatRegs),
|
|
commitToIEWDelay(params->commitToIEWDelay)
|
|
{
|
|
assert(fuPool);
|
|
|
|
switchedOut = false;
|
|
|
|
numThreads = params->numThreads;
|
|
|
|
// Set the number of physical registers as the number of int + float
|
|
numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
|
|
|
|
//Create an entry for each physical register within the
|
|
//dependency graph.
|
|
dependGraph.resize(numPhysRegs);
|
|
|
|
// Resize the register scoreboard.
|
|
regScoreboard.resize(numPhysRegs);
|
|
|
|
//Initialize Mem Dependence Units
|
|
for (ThreadID tid = 0; tid < numThreads; tid++) {
|
|
memDepUnit[tid].init(params, tid);
|
|
memDepUnit[tid].setIQ(this);
|
|
}
|
|
|
|
resetState();
|
|
|
|
std::string policy = params->smtIQPolicy;
|
|
|
|
//Convert string to lowercase
|
|
std::transform(policy.begin(), policy.end(), policy.begin(),
|
|
(int(*)(int)) tolower);
|
|
|
|
//Figure out resource sharing policy
|
|
if (policy == "dynamic") {
|
|
iqPolicy = Dynamic;
|
|
|
|
//Set Max Entries to Total ROB Capacity
|
|
for (ThreadID tid = 0; tid < numThreads; tid++) {
|
|
maxEntries[tid] = numEntries;
|
|
}
|
|
|
|
} else if (policy == "partitioned") {
|
|
iqPolicy = Partitioned;
|
|
|
|
//@todo:make work if part_amt doesnt divide evenly.
|
|
int part_amt = numEntries / numThreads;
|
|
|
|
//Divide ROB up evenly
|
|
for (ThreadID tid = 0; tid < numThreads; tid++) {
|
|
maxEntries[tid] = part_amt;
|
|
}
|
|
|
|
DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
|
|
"%i entries per thread.\n",part_amt);
|
|
} else if (policy == "threshold") {
|
|
iqPolicy = Threshold;
|
|
|
|
double threshold = (double)params->smtIQThreshold / 100;
|
|
|
|
int thresholdIQ = (int)((double)threshold * numEntries);
|
|
|
|
//Divide up by threshold amount
|
|
for (ThreadID tid = 0; tid < numThreads; tid++) {
|
|
maxEntries[tid] = thresholdIQ;
|
|
}
|
|
|
|
DPRINTF(IQ, "IQ sharing policy set to Threshold:"
|
|
"%i entries per thread.\n",thresholdIQ);
|
|
} else {
|
|
assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
|
|
"Partitioned, Threshold}");
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
InstructionQueue<Impl>::~InstructionQueue()
|
|
{
|
|
dependGraph.reset();
|
|
#ifdef DEBUG
|
|
cprintf("Nodes traversed: %i, removed: %i\n",
|
|
dependGraph.nodesTraversed, dependGraph.nodesRemoved);
|
|
#endif
|
|
}
|
|
|
|
template <class Impl>
|
|
std::string
|
|
InstructionQueue<Impl>::name() const
|
|
{
|
|
return cpu->name() + ".iq";
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::regStats()
|
|
{
|
|
using namespace Stats;
|
|
iqInstsAdded
|
|
.name(name() + ".iqInstsAdded")
|
|
.desc("Number of instructions added to the IQ (excludes non-spec)")
|
|
.prereq(iqInstsAdded);
|
|
|
|
iqNonSpecInstsAdded
|
|
.name(name() + ".iqNonSpecInstsAdded")
|
|
.desc("Number of non-speculative instructions added to the IQ")
|
|
.prereq(iqNonSpecInstsAdded);
|
|
|
|
iqInstsIssued
|
|
.name(name() + ".iqInstsIssued")
|
|
.desc("Number of instructions issued")
|
|
.prereq(iqInstsIssued);
|
|
|
|
iqIntInstsIssued
|
|
.name(name() + ".iqIntInstsIssued")
|
|
.desc("Number of integer instructions issued")
|
|
.prereq(iqIntInstsIssued);
|
|
|
|
iqFloatInstsIssued
|
|
.name(name() + ".iqFloatInstsIssued")
|
|
.desc("Number of float instructions issued")
|
|
.prereq(iqFloatInstsIssued);
|
|
|
|
iqBranchInstsIssued
|
|
.name(name() + ".iqBranchInstsIssued")
|
|
.desc("Number of branch instructions issued")
|
|
.prereq(iqBranchInstsIssued);
|
|
|
|
iqMemInstsIssued
|
|
.name(name() + ".iqMemInstsIssued")
|
|
.desc("Number of memory instructions issued")
|
|
.prereq(iqMemInstsIssued);
|
|
|
|
iqMiscInstsIssued
|
|
.name(name() + ".iqMiscInstsIssued")
|
|
.desc("Number of miscellaneous instructions issued")
|
|
.prereq(iqMiscInstsIssued);
|
|
|
|
iqSquashedInstsIssued
|
|
.name(name() + ".iqSquashedInstsIssued")
|
|
.desc("Number of squashed instructions issued")
|
|
.prereq(iqSquashedInstsIssued);
|
|
|
|
iqSquashedInstsExamined
|
|
.name(name() + ".iqSquashedInstsExamined")
|
|
.desc("Number of squashed instructions iterated over during squash;"
|
|
" mainly for profiling")
|
|
.prereq(iqSquashedInstsExamined);
|
|
|
|
iqSquashedOperandsExamined
|
|
.name(name() + ".iqSquashedOperandsExamined")
|
|
.desc("Number of squashed operands that are examined and possibly "
|
|
"removed from graph")
|
|
.prereq(iqSquashedOperandsExamined);
|
|
|
|
iqSquashedNonSpecRemoved
|
|
.name(name() + ".iqSquashedNonSpecRemoved")
|
|
.desc("Number of squashed non-spec instructions that were removed")
|
|
.prereq(iqSquashedNonSpecRemoved);
|
|
/*
|
|
queueResDist
|
|
.init(Num_OpClasses, 0, 99, 2)
|
|
.name(name() + ".IQ:residence:")
|
|
.desc("cycles from dispatch to issue")
|
|
.flags(total | pdf | cdf )
|
|
;
|
|
for (int i = 0; i < Num_OpClasses; ++i) {
|
|
queueResDist.subname(i, opClassStrings[i]);
|
|
}
|
|
*/
|
|
numIssuedDist
|
|
.init(0,totalWidth,1)
|
|
.name(name() + ".ISSUE:issued_per_cycle")
|
|
.desc("Number of insts issued each cycle")
|
|
.flags(pdf)
|
|
;
|
|
/*
|
|
dist_unissued
|
|
.init(Num_OpClasses+2)
|
|
.name(name() + ".ISSUE:unissued_cause")
|
|
.desc("Reason ready instruction not issued")
|
|
.flags(pdf | dist)
|
|
;
|
|
for (int i=0; i < (Num_OpClasses + 2); ++i) {
|
|
dist_unissued.subname(i, unissued_names[i]);
|
|
}
|
|
*/
|
|
statIssuedInstType
|
|
.init(numThreads,Enums::Num_OpClass)
|
|
.name(name() + ".ISSUE:FU_type")
|
|
.desc("Type of FU issued")
|
|
.flags(total | pdf | dist)
|
|
;
|
|
statIssuedInstType.ysubnames(Enums::OpClassStrings);
|
|
|
|
//
|
|
// How long did instructions for a particular FU type wait prior to issue
|
|
//
|
|
/*
|
|
issueDelayDist
|
|
.init(Num_OpClasses,0,99,2)
|
|
.name(name() + ".ISSUE:")
|
|
.desc("cycles from operands ready to issue")
|
|
.flags(pdf | cdf)
|
|
;
|
|
|
|
for (int i=0; i<Num_OpClasses; ++i) {
|
|
std::stringstream subname;
|
|
subname << opClassStrings[i] << "_delay";
|
|
issueDelayDist.subname(i, subname.str());
|
|
}
|
|
*/
|
|
issueRate
|
|
.name(name() + ".ISSUE:rate")
|
|
.desc("Inst issue rate")
|
|
.flags(total)
|
|
;
|
|
issueRate = iqInstsIssued / cpu->numCycles;
|
|
|
|
statFuBusy
|
|
.init(Num_OpClasses)
|
|
.name(name() + ".ISSUE:fu_full")
|
|
.desc("attempts to use FU when none available")
|
|
.flags(pdf | dist)
|
|
;
|
|
for (int i=0; i < Num_OpClasses; ++i) {
|
|
statFuBusy.subname(i, Enums::OpClassStrings[i]);
|
|
}
|
|
|
|
fuBusy
|
|
.init(numThreads)
|
|
.name(name() + ".ISSUE:fu_busy_cnt")
|
|
.desc("FU busy when requested")
|
|
.flags(total)
|
|
;
|
|
|
|
fuBusyRate
|
|
.name(name() + ".ISSUE:fu_busy_rate")
|
|
.desc("FU busy rate (busy events/executed inst)")
|
|
.flags(total)
|
|
;
|
|
fuBusyRate = fuBusy / iqInstsIssued;
|
|
|
|
for (ThreadID tid = 0; tid < numThreads; tid++) {
|
|
// Tell mem dependence unit to reg stats as well.
|
|
memDepUnit[tid].regStats();
|
|
}
|
|
|
|
intInstQueueReads
|
|
.name(name() + ".int_inst_queue_reads")
|
|
.desc("Number of integer instruction queue reads")
|
|
.flags(total);
|
|
|
|
intInstQueueWrites
|
|
.name(name() + ".int_inst_queue_writes")
|
|
.desc("Number of integer instruction queue writes")
|
|
.flags(total);
|
|
|
|
intInstQueueWakeupAccesses
|
|
.name(name() + ".int_inst_queue_wakeup_accesses")
|
|
.desc("Number of integer instruction queue wakeup accesses")
|
|
.flags(total);
|
|
|
|
fpInstQueueReads
|
|
.name(name() + ".fp_inst_queue_reads")
|
|
.desc("Number of floating instruction queue reads")
|
|
.flags(total);
|
|
|
|
fpInstQueueWrites
|
|
.name(name() + ".fp_inst_queue_writes")
|
|
.desc("Number of floating instruction queue writes")
|
|
.flags(total);
|
|
|
|
fpInstQueueWakeupQccesses
|
|
.name(name() + ".fp_inst_queue_wakeup_accesses")
|
|
.desc("Number of floating instruction queue wakeup accesses")
|
|
.flags(total);
|
|
|
|
intAluAccesses
|
|
.name(name() + ".int_alu_accesses")
|
|
.desc("Number of integer alu accesses")
|
|
.flags(total);
|
|
|
|
fpAluAccesses
|
|
.name(name() + ".fp_alu_accesses")
|
|
.desc("Number of floating point alu accesses")
|
|
.flags(total);
|
|
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::resetState()
|
|
{
|
|
//Initialize thread IQ counts
|
|
for (ThreadID tid = 0; tid <numThreads; tid++) {
|
|
count[tid] = 0;
|
|
instList[tid].clear();
|
|
}
|
|
|
|
// Initialize the number of free IQ entries.
|
|
freeEntries = numEntries;
|
|
|
|
// Note that in actuality, the registers corresponding to the logical
|
|
// registers start off as ready. However this doesn't matter for the
|
|
// IQ as the instruction should have been correctly told if those
|
|
// registers are ready in rename. Thus it can all be initialized as
|
|
// unready.
|
|
for (int i = 0; i < numPhysRegs; ++i) {
|
|
regScoreboard[i] = false;
|
|
}
|
|
|
|
for (ThreadID tid = 0; tid < numThreads; ++tid) {
|
|
squashedSeqNum[tid] = 0;
|
|
}
|
|
|
|
for (int i = 0; i < Num_OpClasses; ++i) {
|
|
while (!readyInsts[i].empty())
|
|
readyInsts[i].pop();
|
|
queueOnList[i] = false;
|
|
readyIt[i] = listOrder.end();
|
|
}
|
|
nonSpecInsts.clear();
|
|
listOrder.clear();
|
|
deferredMemInsts.clear();
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
|
|
{
|
|
activeThreads = at_ptr;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
|
|
{
|
|
issueToExecuteQueue = i2e_ptr;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
|
|
{
|
|
timeBuffer = tb_ptr;
|
|
|
|
fromCommit = timeBuffer->getWire(-commitToIEWDelay);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::switchOut()
|
|
{
|
|
/*
|
|
if (!instList[0].empty() || (numEntries != freeEntries) ||
|
|
!readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) {
|
|
dumpInsts();
|
|
// assert(0);
|
|
}
|
|
*/
|
|
resetState();
|
|
dependGraph.reset();
|
|
instsToExecute.clear();
|
|
switchedOut = true;
|
|
for (ThreadID tid = 0; tid < numThreads; ++tid) {
|
|
memDepUnit[tid].switchOut();
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::takeOverFrom()
|
|
{
|
|
switchedOut = false;
|
|
}
|
|
|
|
template <class Impl>
|
|
int
|
|
InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
|
|
{
|
|
if (iqPolicy == Partitioned) {
|
|
return numEntries / num_threads;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::resetEntries()
|
|
{
|
|
if (iqPolicy != Dynamic || numThreads > 1) {
|
|
int active_threads = activeThreads->size();
|
|
|
|
list<ThreadID>::iterator threads = activeThreads->begin();
|
|
list<ThreadID>::iterator end = activeThreads->end();
|
|
|
|
while (threads != end) {
|
|
ThreadID tid = *threads++;
|
|
|
|
if (iqPolicy == Partitioned) {
|
|
maxEntries[tid] = numEntries / active_threads;
|
|
} else if(iqPolicy == Threshold && active_threads == 1) {
|
|
maxEntries[tid] = numEntries;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
unsigned
|
|
InstructionQueue<Impl>::numFreeEntries()
|
|
{
|
|
return freeEntries;
|
|
}
|
|
|
|
template <class Impl>
|
|
unsigned
|
|
InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
|
|
{
|
|
return maxEntries[tid] - count[tid];
|
|
}
|
|
|
|
// Might want to do something more complex if it knows how many instructions
|
|
// will be issued this cycle.
|
|
template <class Impl>
|
|
bool
|
|
InstructionQueue<Impl>::isFull()
|
|
{
|
|
if (freeEntries == 0) {
|
|
return(true);
|
|
} else {
|
|
return(false);
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
bool
|
|
InstructionQueue<Impl>::isFull(ThreadID tid)
|
|
{
|
|
if (numFreeEntries(tid) == 0) {
|
|
return(true);
|
|
} else {
|
|
return(false);
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
bool
|
|
InstructionQueue<Impl>::hasReadyInsts()
|
|
{
|
|
if (!listOrder.empty()) {
|
|
return true;
|
|
}
|
|
|
|
for (int i = 0; i < Num_OpClasses; ++i) {
|
|
if (!readyInsts[i].empty()) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
|
|
{
|
|
new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
|
|
// Make sure the instruction is valid
|
|
assert(new_inst);
|
|
|
|
DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
|
|
new_inst->seqNum, new_inst->pcState());
|
|
|
|
assert(freeEntries != 0);
|
|
|
|
instList[new_inst->threadNumber].push_back(new_inst);
|
|
|
|
--freeEntries;
|
|
|
|
new_inst->setInIQ();
|
|
|
|
// Look through its source registers (physical regs), and mark any
|
|
// dependencies.
|
|
addToDependents(new_inst);
|
|
|
|
// Have this instruction set itself as the producer of its destination
|
|
// register(s).
|
|
addToProducers(new_inst);
|
|
|
|
if (new_inst->isMemRef()) {
|
|
memDepUnit[new_inst->threadNumber].insert(new_inst);
|
|
} else {
|
|
addIfReady(new_inst);
|
|
}
|
|
|
|
++iqInstsAdded;
|
|
|
|
count[new_inst->threadNumber]++;
|
|
|
|
assert(freeEntries == (numEntries - countInsts()));
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
|
|
{
|
|
// @todo: Clean up this code; can do it by setting inst as unable
|
|
// to issue, then calling normal insert on the inst.
|
|
new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
|
|
|
|
assert(new_inst);
|
|
|
|
nonSpecInsts[new_inst->seqNum] = new_inst;
|
|
|
|
DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
|
|
"to the IQ.\n",
|
|
new_inst->seqNum, new_inst->pcState());
|
|
|
|
assert(freeEntries != 0);
|
|
|
|
instList[new_inst->threadNumber].push_back(new_inst);
|
|
|
|
--freeEntries;
|
|
|
|
new_inst->setInIQ();
|
|
|
|
// Have this instruction set itself as the producer of its destination
|
|
// register(s).
|
|
addToProducers(new_inst);
|
|
|
|
// If it's a memory instruction, add it to the memory dependency
|
|
// unit.
|
|
if (new_inst->isMemRef()) {
|
|
memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
|
|
}
|
|
|
|
++iqNonSpecInstsAdded;
|
|
|
|
count[new_inst->threadNumber]++;
|
|
|
|
assert(freeEntries == (numEntries - countInsts()));
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
|
|
{
|
|
memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
|
|
|
|
insertNonSpec(barr_inst);
|
|
}
|
|
|
|
template <class Impl>
|
|
typename Impl::DynInstPtr
|
|
InstructionQueue<Impl>::getInstToExecute()
|
|
{
|
|
assert(!instsToExecute.empty());
|
|
DynInstPtr inst = instsToExecute.front();
|
|
instsToExecute.pop_front();
|
|
if (inst->isFloating()){
|
|
fpInstQueueReads++;
|
|
} else {
|
|
intInstQueueReads++;
|
|
}
|
|
return inst;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::addToOrderList(OpClass op_class)
|
|
{
|
|
assert(!readyInsts[op_class].empty());
|
|
|
|
ListOrderEntry queue_entry;
|
|
|
|
queue_entry.queueType = op_class;
|
|
|
|
queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
|
|
|
|
ListOrderIt list_it = listOrder.begin();
|
|
ListOrderIt list_end_it = listOrder.end();
|
|
|
|
while (list_it != list_end_it) {
|
|
if ((*list_it).oldestInst > queue_entry.oldestInst) {
|
|
break;
|
|
}
|
|
|
|
list_it++;
|
|
}
|
|
|
|
readyIt[op_class] = listOrder.insert(list_it, queue_entry);
|
|
queueOnList[op_class] = true;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
|
|
{
|
|
// Get iterator of next item on the list
|
|
// Delete the original iterator
|
|
// Determine if the next item is either the end of the list or younger
|
|
// than the new instruction. If so, then add in a new iterator right here.
|
|
// If not, then move along.
|
|
ListOrderEntry queue_entry;
|
|
OpClass op_class = (*list_order_it).queueType;
|
|
ListOrderIt next_it = list_order_it;
|
|
|
|
++next_it;
|
|
|
|
queue_entry.queueType = op_class;
|
|
queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
|
|
|
|
while (next_it != listOrder.end() &&
|
|
(*next_it).oldestInst < queue_entry.oldestInst) {
|
|
++next_it;
|
|
}
|
|
|
|
readyIt[op_class] = listOrder.insert(next_it, queue_entry);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
|
|
{
|
|
DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
|
|
// The CPU could have been sleeping until this op completed (*extremely*
|
|
// long latency op). Wake it if it was. This may be overkill.
|
|
if (isSwitchedOut()) {
|
|
DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n",
|
|
inst->seqNum);
|
|
return;
|
|
}
|
|
|
|
iewStage->wakeCPU();
|
|
|
|
if (fu_idx > -1)
|
|
fuPool->freeUnitNextCycle(fu_idx);
|
|
|
|
// @todo: Ensure that these FU Completions happen at the beginning
|
|
// of a cycle, otherwise they could add too many instructions to
|
|
// the queue.
|
|
issueToExecuteQueue->access(-1)->size++;
|
|
instsToExecute.push_back(inst);
|
|
}
|
|
|
|
// @todo: Figure out a better way to remove the squashed items from the
|
|
// lists. Checking the top item of each list to see if it's squashed
|
|
// wastes time and forces jumps.
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::scheduleReadyInsts()
|
|
{
|
|
DPRINTF(IQ, "Attempting to schedule ready instructions from "
|
|
"the IQ.\n");
|
|
|
|
IssueStruct *i2e_info = issueToExecuteQueue->access(0);
|
|
|
|
DynInstPtr deferred_mem_inst;
|
|
int total_deferred_mem_issued = 0;
|
|
while (total_deferred_mem_issued < totalWidth &&
|
|
(deferred_mem_inst = getDeferredMemInstToExecute()) != NULL) {
|
|
issueToExecuteQueue->access(0)->size++;
|
|
instsToExecute.push_back(deferred_mem_inst);
|
|
total_deferred_mem_issued++;
|
|
}
|
|
|
|
// Have iterator to head of the list
|
|
// While I haven't exceeded bandwidth or reached the end of the list,
|
|
// Try to get a FU that can do what this op needs.
|
|
// If successful, change the oldestInst to the new top of the list, put
|
|
// the queue in the proper place in the list.
|
|
// Increment the iterator.
|
|
// This will avoid trying to schedule a certain op class if there are no
|
|
// FUs that handle it.
|
|
ListOrderIt order_it = listOrder.begin();
|
|
ListOrderIt order_end_it = listOrder.end();
|
|
int total_issued = 0;
|
|
|
|
while (total_issued < (totalWidth - total_deferred_mem_issued) &&
|
|
iewStage->canIssue() &&
|
|
order_it != order_end_it) {
|
|
OpClass op_class = (*order_it).queueType;
|
|
|
|
assert(!readyInsts[op_class].empty());
|
|
|
|
DynInstPtr issuing_inst = readyInsts[op_class].top();
|
|
|
|
issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
|
|
|
|
assert(issuing_inst->seqNum == (*order_it).oldestInst);
|
|
|
|
if (issuing_inst->isSquashed()) {
|
|
readyInsts[op_class].pop();
|
|
|
|
if (!readyInsts[op_class].empty()) {
|
|
moveToYoungerInst(order_it);
|
|
} else {
|
|
readyIt[op_class] = listOrder.end();
|
|
queueOnList[op_class] = false;
|
|
}
|
|
|
|
listOrder.erase(order_it++);
|
|
|
|
++iqSquashedInstsIssued;
|
|
|
|
continue;
|
|
}
|
|
|
|
int idx = -2;
|
|
int op_latency = 1;
|
|
ThreadID tid = issuing_inst->threadNumber;
|
|
|
|
if (op_class != No_OpClass) {
|
|
idx = fuPool->getUnit(op_class);
|
|
issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
|
|
if (idx > -1) {
|
|
op_latency = fuPool->getOpLatency(op_class);
|
|
}
|
|
}
|
|
|
|
// If we have an instruction that doesn't require a FU, or a
|
|
// valid FU, then schedule for execution.
|
|
if (idx == -2 || idx != -1) {
|
|
if (op_latency == 1) {
|
|
i2e_info->size++;
|
|
instsToExecute.push_back(issuing_inst);
|
|
|
|
// Add the FU onto the list of FU's to be freed next
|
|
// cycle if we used one.
|
|
if (idx >= 0)
|
|
fuPool->freeUnitNextCycle(idx);
|
|
} else {
|
|
int issue_latency = fuPool->getIssueLatency(op_class);
|
|
// Generate completion event for the FU
|
|
FUCompletion *execution = new FUCompletion(issuing_inst,
|
|
idx, this);
|
|
|
|
cpu->schedule(execution, curTick() + cpu->ticks(op_latency - 1));
|
|
|
|
// @todo: Enforce that issue_latency == 1 or op_latency
|
|
if (issue_latency > 1) {
|
|
// If FU isn't pipelined, then it must be freed
|
|
// upon the execution completing.
|
|
execution->setFreeFU();
|
|
} else {
|
|
// Add the FU onto the list of FU's to be freed next cycle.
|
|
fuPool->freeUnitNextCycle(idx);
|
|
}
|
|
}
|
|
|
|
DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
|
|
"[sn:%lli]\n",
|
|
tid, issuing_inst->pcState(),
|
|
issuing_inst->seqNum);
|
|
|
|
readyInsts[op_class].pop();
|
|
|
|
if (!readyInsts[op_class].empty()) {
|
|
moveToYoungerInst(order_it);
|
|
} else {
|
|
readyIt[op_class] = listOrder.end();
|
|
queueOnList[op_class] = false;
|
|
}
|
|
|
|
issuing_inst->setIssued();
|
|
++total_issued;
|
|
|
|
if (!issuing_inst->isMemRef()) {
|
|
// Memory instructions can not be freed from the IQ until they
|
|
// complete.
|
|
++freeEntries;
|
|
count[tid]--;
|
|
issuing_inst->clearInIQ();
|
|
} else {
|
|
memDepUnit[tid].issue(issuing_inst);
|
|
}
|
|
|
|
listOrder.erase(order_it++);
|
|
statIssuedInstType[tid][op_class]++;
|
|
iewStage->incrWb(issuing_inst->seqNum);
|
|
} else {
|
|
statFuBusy[op_class]++;
|
|
fuBusy[tid]++;
|
|
++order_it;
|
|
}
|
|
}
|
|
|
|
numIssuedDist.sample(total_issued);
|
|
iqInstsIssued+= total_issued;
|
|
|
|
// If we issued any instructions, tell the CPU we had activity.
|
|
if (total_issued || total_deferred_mem_issued) {
|
|
cpu->activityThisCycle();
|
|
} else {
|
|
DPRINTF(IQ, "Not able to schedule any instructions.\n");
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
|
|
{
|
|
DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
|
|
"to execute.\n", inst);
|
|
|
|
NonSpecMapIt inst_it = nonSpecInsts.find(inst);
|
|
|
|
assert(inst_it != nonSpecInsts.end());
|
|
|
|
ThreadID tid = (*inst_it).second->threadNumber;
|
|
|
|
(*inst_it).second->setAtCommit();
|
|
|
|
(*inst_it).second->setCanIssue();
|
|
|
|
if (!(*inst_it).second->isMemRef()) {
|
|
addIfReady((*inst_it).second);
|
|
} else {
|
|
memDepUnit[tid].nonSpecInstReady((*inst_it).second);
|
|
}
|
|
|
|
(*inst_it).second = NULL;
|
|
|
|
nonSpecInsts.erase(inst_it);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
|
|
{
|
|
DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
|
|
tid,inst);
|
|
|
|
ListIt iq_it = instList[tid].begin();
|
|
|
|
while (iq_it != instList[tid].end() &&
|
|
(*iq_it)->seqNum <= inst) {
|
|
++iq_it;
|
|
instList[tid].pop_front();
|
|
}
|
|
|
|
assert(freeEntries == (numEntries - countInsts()));
|
|
}
|
|
|
|
template <class Impl>
|
|
int
|
|
InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
|
|
{
|
|
int dependents = 0;
|
|
|
|
// The instruction queue here takes care of both floating and int ops
|
|
if (completed_inst->isFloating()) {
|
|
fpInstQueueWakeupQccesses++;
|
|
} else {
|
|
intInstQueueWakeupAccesses++;
|
|
}
|
|
|
|
DPRINTF(IQ, "Waking dependents of completed instruction.\n");
|
|
|
|
assert(!completed_inst->isSquashed());
|
|
|
|
// Tell the memory dependence unit to wake any dependents on this
|
|
// instruction if it is a memory instruction. Also complete the memory
|
|
// instruction at this point since we know it executed without issues.
|
|
// @todo: Might want to rename "completeMemInst" to something that
|
|
// indicates that it won't need to be replayed, and call this
|
|
// earlier. Might not be a big deal.
|
|
if (completed_inst->isMemRef()) {
|
|
memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
|
|
completeMemInst(completed_inst);
|
|
} else if (completed_inst->isMemBarrier() ||
|
|
completed_inst->isWriteBarrier()) {
|
|
memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
|
|
}
|
|
|
|
for (int dest_reg_idx = 0;
|
|
dest_reg_idx < completed_inst->numDestRegs();
|
|
dest_reg_idx++)
|
|
{
|
|
PhysRegIndex dest_reg =
|
|
completed_inst->renamedDestRegIdx(dest_reg_idx);
|
|
|
|
// Special case of uniq or control registers. They are not
|
|
// handled by the IQ and thus have no dependency graph entry.
|
|
// @todo Figure out a cleaner way to handle this.
|
|
if (dest_reg >= numPhysRegs) {
|
|
DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
|
|
numPhysRegs);
|
|
continue;
|
|
}
|
|
|
|
DPRINTF(IQ, "Waking any dependents on register %i.\n",
|
|
(int) dest_reg);
|
|
|
|
//Go through the dependency chain, marking the registers as
|
|
//ready within the waiting instructions.
|
|
DynInstPtr dep_inst = dependGraph.pop(dest_reg);
|
|
|
|
while (dep_inst) {
|
|
DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
|
|
"PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
|
|
|
|
// Might want to give more information to the instruction
|
|
// so that it knows which of its source registers is
|
|
// ready. However that would mean that the dependency
|
|
// graph entries would need to hold the src_reg_idx.
|
|
dep_inst->markSrcRegReady();
|
|
|
|
addIfReady(dep_inst);
|
|
|
|
dep_inst = dependGraph.pop(dest_reg);
|
|
|
|
++dependents;
|
|
}
|
|
|
|
// Reset the head node now that all of its dependents have
|
|
// been woken up.
|
|
assert(dependGraph.empty(dest_reg));
|
|
dependGraph.clearInst(dest_reg);
|
|
|
|
// Mark the scoreboard as having that register ready.
|
|
regScoreboard[dest_reg] = true;
|
|
}
|
|
return dependents;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
|
|
{
|
|
OpClass op_class = ready_inst->opClass();
|
|
|
|
readyInsts[op_class].push(ready_inst);
|
|
|
|
// Will need to reorder the list if either a queue is not on the list,
|
|
// or it has an older instruction than last time.
|
|
if (!queueOnList[op_class]) {
|
|
addToOrderList(op_class);
|
|
} else if (readyInsts[op_class].top()->seqNum <
|
|
(*readyIt[op_class]).oldestInst) {
|
|
listOrder.erase(readyIt[op_class]);
|
|
addToOrderList(op_class);
|
|
}
|
|
|
|
DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
|
|
"the ready list, PC %s opclass:%i [sn:%lli].\n",
|
|
ready_inst->pcState(), op_class, ready_inst->seqNum);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
|
|
{
|
|
DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
|
|
|
|
// Reset DTB translation state
|
|
resched_inst->translationStarted = false;
|
|
resched_inst->translationCompleted = false;
|
|
|
|
resched_inst->clearCanIssue();
|
|
memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
|
|
{
|
|
memDepUnit[replay_inst->threadNumber].replay(replay_inst);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
|
|
{
|
|
ThreadID tid = completed_inst->threadNumber;
|
|
|
|
DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
|
|
completed_inst->pcState(), completed_inst->seqNum);
|
|
|
|
++freeEntries;
|
|
|
|
completed_inst->memOpDone = true;
|
|
|
|
memDepUnit[tid].completed(completed_inst);
|
|
count[tid]--;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
|
|
{
|
|
deferredMemInsts.push_back(deferred_inst);
|
|
}
|
|
|
|
template <class Impl>
|
|
typename Impl::DynInstPtr
|
|
InstructionQueue<Impl>::getDeferredMemInstToExecute()
|
|
{
|
|
for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
|
|
++it) {
|
|
if ((*it)->translationCompleted) {
|
|
DynInstPtr ret = *it;
|
|
deferredMemInsts.erase(it);
|
|
return ret;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::violation(DynInstPtr &store,
|
|
DynInstPtr &faulting_load)
|
|
{
|
|
intInstQueueWrites++;
|
|
memDepUnit[store->threadNumber].violation(store, faulting_load);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::squash(ThreadID tid)
|
|
{
|
|
DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
|
|
"the IQ.\n", tid);
|
|
|
|
// Read instruction sequence number of last instruction out of the
|
|
// time buffer.
|
|
squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
|
|
|
|
// Call doSquash if there are insts in the IQ
|
|
if (count[tid] > 0) {
|
|
doSquash(tid);
|
|
}
|
|
|
|
// Also tell the memory dependence unit to squash.
|
|
memDepUnit[tid].squash(squashedSeqNum[tid], tid);
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::doSquash(ThreadID tid)
|
|
{
|
|
// Start at the tail.
|
|
ListIt squash_it = instList[tid].end();
|
|
--squash_it;
|
|
|
|
DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
|
|
tid, squashedSeqNum[tid]);
|
|
|
|
// Squash any instructions younger than the squashed sequence number
|
|
// given.
|
|
while (squash_it != instList[tid].end() &&
|
|
(*squash_it)->seqNum > squashedSeqNum[tid]) {
|
|
|
|
DynInstPtr squashed_inst = (*squash_it);
|
|
squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
|
|
|
|
// Only handle the instruction if it actually is in the IQ and
|
|
// hasn't already been squashed in the IQ.
|
|
if (squashed_inst->threadNumber != tid ||
|
|
squashed_inst->isSquashedInIQ()) {
|
|
--squash_it;
|
|
continue;
|
|
}
|
|
|
|
if (!squashed_inst->isIssued() ||
|
|
(squashed_inst->isMemRef() &&
|
|
!squashed_inst->memOpDone)) {
|
|
|
|
DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
|
|
tid, squashed_inst->seqNum, squashed_inst->pcState());
|
|
|
|
// Remove the instruction from the dependency list.
|
|
if (!squashed_inst->isNonSpeculative() &&
|
|
!squashed_inst->isStoreConditional() &&
|
|
!squashed_inst->isMemBarrier() &&
|
|
!squashed_inst->isWriteBarrier()) {
|
|
|
|
for (int src_reg_idx = 0;
|
|
src_reg_idx < squashed_inst->numSrcRegs();
|
|
src_reg_idx++)
|
|
{
|
|
PhysRegIndex src_reg =
|
|
squashed_inst->renamedSrcRegIdx(src_reg_idx);
|
|
|
|
// Only remove it from the dependency graph if it
|
|
// was placed there in the first place.
|
|
|
|
// Instead of doing a linked list traversal, we
|
|
// can just remove these squashed instructions
|
|
// either at issue time, or when the register is
|
|
// overwritten. The only downside to this is it
|
|
// leaves more room for error.
|
|
|
|
if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
|
|
src_reg < numPhysRegs) {
|
|
dependGraph.remove(src_reg, squashed_inst);
|
|
}
|
|
|
|
|
|
++iqSquashedOperandsExamined;
|
|
}
|
|
} else if (!squashed_inst->isStoreConditional() ||
|
|
!squashed_inst->isCompleted()) {
|
|
NonSpecMapIt ns_inst_it =
|
|
nonSpecInsts.find(squashed_inst->seqNum);
|
|
assert(ns_inst_it != nonSpecInsts.end());
|
|
if (ns_inst_it == nonSpecInsts.end()) {
|
|
assert(squashed_inst->getFault() != NoFault);
|
|
} else {
|
|
|
|
(*ns_inst_it).second = NULL;
|
|
|
|
nonSpecInsts.erase(ns_inst_it);
|
|
|
|
++iqSquashedNonSpecRemoved;
|
|
}
|
|
}
|
|
|
|
// Might want to also clear out the head of the dependency graph.
|
|
|
|
// Mark it as squashed within the IQ.
|
|
squashed_inst->setSquashedInIQ();
|
|
|
|
// @todo: Remove this hack where several statuses are set so the
|
|
// inst will flow through the rest of the pipeline.
|
|
squashed_inst->setIssued();
|
|
squashed_inst->setCanCommit();
|
|
squashed_inst->clearInIQ();
|
|
|
|
//Update Thread IQ Count
|
|
count[squashed_inst->threadNumber]--;
|
|
|
|
++freeEntries;
|
|
}
|
|
|
|
instList[tid].erase(squash_it--);
|
|
++iqSquashedInstsExamined;
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
bool
|
|
InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
|
|
{
|
|
// Loop through the instruction's source registers, adding
|
|
// them to the dependency list if they are not ready.
|
|
int8_t total_src_regs = new_inst->numSrcRegs();
|
|
bool return_val = false;
|
|
|
|
for (int src_reg_idx = 0;
|
|
src_reg_idx < total_src_regs;
|
|
src_reg_idx++)
|
|
{
|
|
// Only add it to the dependency graph if it's not ready.
|
|
if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
|
|
PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
|
|
|
|
// Check the IQ's scoreboard to make sure the register
|
|
// hasn't become ready while the instruction was in flight
|
|
// between stages. Only if it really isn't ready should
|
|
// it be added to the dependency graph.
|
|
if (src_reg >= numPhysRegs) {
|
|
continue;
|
|
} else if (regScoreboard[src_reg] == false) {
|
|
DPRINTF(IQ, "Instruction PC %s has src reg %i that "
|
|
"is being added to the dependency chain.\n",
|
|
new_inst->pcState(), src_reg);
|
|
|
|
dependGraph.insert(src_reg, new_inst);
|
|
|
|
// Change the return value to indicate that something
|
|
// was added to the dependency graph.
|
|
return_val = true;
|
|
} else {
|
|
DPRINTF(IQ, "Instruction PC %s has src reg %i that "
|
|
"became ready before it reached the IQ.\n",
|
|
new_inst->pcState(), src_reg);
|
|
// Mark a register ready within the instruction.
|
|
new_inst->markSrcRegReady(src_reg_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
return return_val;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
|
|
{
|
|
// Nothing really needs to be marked when an instruction becomes
|
|
// the producer of a register's value, but for convenience a ptr
|
|
// to the producing instruction will be placed in the head node of
|
|
// the dependency links.
|
|
int8_t total_dest_regs = new_inst->numDestRegs();
|
|
|
|
for (int dest_reg_idx = 0;
|
|
dest_reg_idx < total_dest_regs;
|
|
dest_reg_idx++)
|
|
{
|
|
PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
|
|
|
|
// Instructions that use the misc regs will have a reg number
|
|
// higher than the normal physical registers. In this case these
|
|
// registers are not renamed, and there is no need to track
|
|
// dependencies as these instructions must be executed at commit.
|
|
if (dest_reg >= numPhysRegs) {
|
|
continue;
|
|
}
|
|
|
|
if (!dependGraph.empty(dest_reg)) {
|
|
dependGraph.dump();
|
|
panic("Dependency graph %i not empty!", dest_reg);
|
|
}
|
|
|
|
dependGraph.setInst(dest_reg, new_inst);
|
|
|
|
// Mark the scoreboard to say it's not yet ready.
|
|
regScoreboard[dest_reg] = false;
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
|
|
{
|
|
// If the instruction now has all of its source registers
|
|
// available, then add it to the list of ready instructions.
|
|
if (inst->readyToIssue()) {
|
|
|
|
//Add the instruction to the proper ready list.
|
|
if (inst->isMemRef()) {
|
|
|
|
DPRINTF(IQ, "Checking if memory instruction can issue.\n");
|
|
|
|
// Message to the mem dependence unit that this instruction has
|
|
// its registers ready.
|
|
memDepUnit[inst->threadNumber].regsReady(inst);
|
|
|
|
return;
|
|
}
|
|
|
|
OpClass op_class = inst->opClass();
|
|
|
|
DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
|
|
"the ready list, PC %s opclass:%i [sn:%lli].\n",
|
|
inst->pcState(), op_class, inst->seqNum);
|
|
|
|
readyInsts[op_class].push(inst);
|
|
|
|
// Will need to reorder the list if either a queue is not on the list,
|
|
// or it has an older instruction than last time.
|
|
if (!queueOnList[op_class]) {
|
|
addToOrderList(op_class);
|
|
} else if (readyInsts[op_class].top()->seqNum <
|
|
(*readyIt[op_class]).oldestInst) {
|
|
listOrder.erase(readyIt[op_class]);
|
|
addToOrderList(op_class);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
int
|
|
InstructionQueue<Impl>::countInsts()
|
|
{
|
|
#if 0
|
|
//ksewell:This works but definitely could use a cleaner write
|
|
//with a more intuitive way of counting. Right now it's
|
|
//just brute force ....
|
|
// Change the #if if you want to use this method.
|
|
int total_insts = 0;
|
|
|
|
for (ThreadID tid = 0; tid < numThreads; ++tid) {
|
|
ListIt count_it = instList[tid].begin();
|
|
|
|
while (count_it != instList[tid].end()) {
|
|
if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
|
|
if (!(*count_it)->isIssued()) {
|
|
++total_insts;
|
|
} else if ((*count_it)->isMemRef() &&
|
|
!(*count_it)->memOpDone) {
|
|
// Loads that have not been marked as executed still count
|
|
// towards the total instructions.
|
|
++total_insts;
|
|
}
|
|
}
|
|
|
|
++count_it;
|
|
}
|
|
}
|
|
|
|
return total_insts;
|
|
#else
|
|
return numEntries - freeEntries;
|
|
#endif
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::dumpLists()
|
|
{
|
|
for (int i = 0; i < Num_OpClasses; ++i) {
|
|
cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
|
|
|
|
cprintf("\n");
|
|
}
|
|
|
|
cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
|
|
|
|
NonSpecMapIt non_spec_it = nonSpecInsts.begin();
|
|
NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
|
|
|
|
cprintf("Non speculative list: ");
|
|
|
|
while (non_spec_it != non_spec_end_it) {
|
|
cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
|
|
(*non_spec_it).second->seqNum);
|
|
++non_spec_it;
|
|
}
|
|
|
|
cprintf("\n");
|
|
|
|
ListOrderIt list_order_it = listOrder.begin();
|
|
ListOrderIt list_order_end_it = listOrder.end();
|
|
int i = 1;
|
|
|
|
cprintf("List order: ");
|
|
|
|
while (list_order_it != list_order_end_it) {
|
|
cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
|
|
(*list_order_it).oldestInst);
|
|
|
|
++list_order_it;
|
|
++i;
|
|
}
|
|
|
|
cprintf("\n");
|
|
}
|
|
|
|
|
|
template <class Impl>
|
|
void
|
|
InstructionQueue<Impl>::dumpInsts()
|
|
{
|
|
for (ThreadID tid = 0; tid < numThreads; ++tid) {
|
|
int num = 0;
|
|
int valid_num = 0;
|
|
ListIt inst_list_it = instList[tid].begin();
|
|
|
|
while (inst_list_it != instList[tid].end()) {
|
|
cprintf("Instruction:%i\n", num);
|
|
if (!(*inst_list_it)->isSquashed()) {
|
|
if (!(*inst_list_it)->isIssued()) {
|
|
++valid_num;
|
|
cprintf("Count:%i\n", valid_num);
|
|
} else if ((*inst_list_it)->isMemRef() &&
|
|
!(*inst_list_it)->memOpDone) {
|
|
// Loads that have not been marked as executed
|
|
// still count towards the total instructions.
|
|
++valid_num;
|
|
cprintf("Count:%i\n", valid_num);
|
|
}
|
|
}
|
|
|
|
cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
|
|
"Issued:%i\nSquashed:%i\n",
|
|
(*inst_list_it)->pcState(),
|
|
(*inst_list_it)->seqNum,
|
|
(*inst_list_it)->threadNumber,
|
|
(*inst_list_it)->isIssued(),
|
|
(*inst_list_it)->isSquashed());
|
|
|
|
if ((*inst_list_it)->isMemRef()) {
|
|
cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
|
|
}
|
|
|
|
cprintf("\n");
|
|
|
|
inst_list_it++;
|
|
++num;
|
|
}
|
|
}
|
|
|
|
cprintf("Insts to Execute list:\n");
|
|
|
|
int num = 0;
|
|
int valid_num = 0;
|
|
ListIt inst_list_it = instsToExecute.begin();
|
|
|
|
while (inst_list_it != instsToExecute.end())
|
|
{
|
|
cprintf("Instruction:%i\n",
|
|
num);
|
|
if (!(*inst_list_it)->isSquashed()) {
|
|
if (!(*inst_list_it)->isIssued()) {
|
|
++valid_num;
|
|
cprintf("Count:%i\n", valid_num);
|
|
} else if ((*inst_list_it)->isMemRef() &&
|
|
!(*inst_list_it)->memOpDone) {
|
|
// Loads that have not been marked as executed
|
|
// still count towards the total instructions.
|
|
++valid_num;
|
|
cprintf("Count:%i\n", valid_num);
|
|
}
|
|
}
|
|
|
|
cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
|
|
"Issued:%i\nSquashed:%i\n",
|
|
(*inst_list_it)->pcState(),
|
|
(*inst_list_it)->seqNum,
|
|
(*inst_list_it)->threadNumber,
|
|
(*inst_list_it)->isIssued(),
|
|
(*inst_list_it)->isSquashed());
|
|
|
|
if ((*inst_list_it)->isMemRef()) {
|
|
cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
|
|
}
|
|
|
|
cprintf("\n");
|
|
|
|
inst_list_it++;
|
|
++num;
|
|
}
|
|
}
|