No description
e00237e49e
util/stats/db.py: Build a result object as the result of a query operation so it is easier to populate and contains a bit more information than just a big dict. Also change the next level data into a matrix instead of a dict of dicts. Move the "get" function into the Database object. (The get function is used by the output parsing function as the interface for accessing backend storage, same interface for profile stuff.) Change the old get variable to the method variable, it describes how the get works, (whether using sum, stdev, etc.) util/stats/display.py: Clean up the display functions, mostly formatting. Handle values the way they should be now. util/stats/info.py: Totally re-work how values are accessed from their data store. Access individual values on demand instead of calculating everything and passing up a huge result from the bottom. This impacts the way that proxying works, and in general, everything is now esentially a proxy for the lower level database. Provide new operators: unproxy, scalar, vector, value, values, total, and len which retrieve the proper result from the object they are called on. Move the ProxyGroup stuff (proxies of proxies!) here from the now gone proxy.py file and integrate the shared parts of the code. The ProxyGroup stuff allows you to write formulas without specifying the statistics until evaluation time. Get rid of global variables! util/stats/output.py: Move the dbinfo stuff into the Database itself. Each source should have it's own get() function for accessing it's data. This get() function behaves a bit differently than before in that it can return vectors as well, deal with these vectors and with no result conditions better. util/stats/stats.py: the info module no longer has the source global variable, just create the database source and pass it around as necessary --HG-- extra : convert_revision : 8e5aa228e5d3ae8068ef9c40f65b3a2f9e7c0cff |
||
---|---|---|
arch | ||
base | ||
build | ||
configs | ||
cpu | ||
dev | ||
docs | ||
encumbered/cpu/full | ||
kern | ||
python | ||
sim | ||
test | ||
util | ||
Doxyfile | ||
LICENSE | ||
README | ||
RELEASE_NOTES | ||
SConscript |
This is release m5_1.1 of the M5 simulator. This file contains brief "getting started" instructions. For more information, see http://m5.eecs.umich.edu. If you have questions, please send mail to m5sim-users@lists.sourceforge.net. WHAT'S INCLUDED (AND NOT) ------------------------- The basic source release includes these subdirectories: - m5: the simulator itself - m5-test: regression tests - ext: less-common external packages needed to build m5 - alpha-system: source for Alpha console and PALcode To run full-system simulations, you will need compiled console, PALcode, and kernel binaries and one or more disk images. These files are collected in a separate archive, m5_system_1.1.tar.bz2. This file is included on the CD release, or you can download it separately from Sourceforge. M5 supports Linux 2.4/2.6, FreeBSD, and the proprietary Compaq/HP Tru64 version of Unix. We are able to distribute Linux and FreeBSD bootdisks, but we are unable to distribute bootable disk images of Tru64 Unix. If you have a Tru64 license and are interested in obtaining disk images, contact us at m5-dev@eecs.umich.edu. The CD release includes a few extra goodies, such as a tar file containing doxygen-generated HTML documentation (html-docs.tar.gz), a set of Linux source patches (linux_m5-2.6.8.1.diff), and the scons program needed to build M5. If you do not have the CD, the same HTML documentation is available online at http://m5.eecs.umich.edu/docs, the Linux source patches are available at http://m5.eecs.umich.edu/dist/linux_m5-2.6.8.1.diff, and the scons program is available from http://www.scons.org. WHAT'S NEEDED ------------- - GCC version 3.3 or newer - Python 2.3 or newer - SCons 0.96.1 or newer (see http://www.scons.org) WHAT'S RECOMMENDED ------------------ - MySQL (for statistics complex statistics storage/retrieval) - Python-MysqlDB (for statistics analysis) GETTING STARTED --------------- There are two different build targets and three optimizations levels: Target: ------- ALPHA_SE - Syscall emulation simulation ALPHA_FS - Full system simulation Optimization: ------------- m5.debug - debug version of the code with tracing and without optimization m5.opt - optimized version of code with tracing m5.fast - optimized version of the code without tracing and asserts Different targets are built in different subdirectories of m5/build. Binaries with the same target but different optimization levels share the same directory. Note that you can build m5 in any directory you choose;p just configure the target directory using the 'mkbuilddir' script in m5/build. The following steps will build and test the simulator. The variable "$top" refers to the top directory where you've unpacked the files, i.e., the one containing the m5, m5-test, and ext directories. If you have a multiprocessor system, you should give scons a "-j N" argument (like make) to run N jobs in parallel. To build and test the syscall-emulation simulator: cd $top/m5/build scons ALPHA_SE/test/opt/quick This process takes under 10 minutes on a dual 3GHz Xeon system (using the '-j 4' option). To build and test the full-system simulator: 1. Unpack the full-system binaries from m5_system_1.1.tar.bz2. (See above for directions on obtaining this file if you don't have it.) This package includes disk images and kernel, palcode, and console binaries for Linux and FreeBSD. 2. Edit the SYSTEMDIR search path in $top/m5-test/SysPaths.py to include the path to your local copy of the binaries. 3. In $top/m5/build, run "scons ALPHA_FS/test/opt/quick". This process also takes under 10 minutes on a dual 3GHz Xeon system (again using the '-j 4' option).