gem5/base/statistics.hh
Lisa Hsu 86c8eb7b9f statistics.hh:
Grouped the Visible Stats Types and commented them.

base/statistics.hh:
    Grouped the Visible Stats Types and commented them.

--HG--
extra : convert_revision : b5ef457a8c3f26ce5d614e3517bb0a5a4e063202
2003-10-10 15:58:56 -04:00

1781 lines
47 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file */
/**
* @todo
*
* Generalized N-dimensinal vector
* documentation
* fix AvgStor
* key stats
* interval stats
* -- these both can use the same function that prints out a
* specific set of stats
* VectorStandardDeviation totals
*
*/
#ifndef __STATISTICS_HH__
#define __STATISTICS_HH__
#include <algorithm>
#include <functional>
#include <iosfwd>
#include <sstream>
#include <string>
#include <vector>
#include <assert.h>
#include "host.hh"
#include "refcnt.hh"
#include "str.hh"
#ifndef NAN
float __nan();
#define NAN (__nan())
#define __M5_NAN
#endif
#define STAT_DISPLAY_COMPAT
extern Tick curTick;
namespace Statistics {
typedef double result_t;
typedef std::vector<result_t> rvec_t;
typedef u_int32_t FormatFlags;
const FormatFlags none = 0x0000;
const FormatFlags total = 0x0001;
const FormatFlags pdf = 0x0002;
const FormatFlags nozero = 0x0004;
const FormatFlags nonan = 0x0008;
const FormatFlags cdf = 0x0010;
const FormatFlags dist = 0x0020;
const FormatFlags __substat = 0x8000;
const FormatFlags __reserved = __substat;
namespace Detail {
//////////////////////////////////////////////////////////////////////
//
// Statistics Framework Base classes
//
//////////////////////////////////////////////////////////////////////
struct StatData;
struct SubData;
/**
*The base class of all Stats. This does NOT actually hold all the data, but
*it does provide the means for accessing all the Stats data.
*/
class Stat
{
protected:
void setInit();
StatData *mydata();
const StatData *mydata() const;
StatData *print();
const SubData *mysubdata(int index) const;
SubData *mysubdata_create(int index);
public:
virtual std::string myname() const;
virtual std::string mysubname(int index) const;
virtual std::string mydesc() const;
virtual std::string mysubdesc(int index) const;
virtual FormatFlags myflags() const;
virtual bool dodisplay() const;
virtual int myprecision() const;
public:
Stat(bool reg);
virtual ~Stat() {}
virtual void display(std::ostream &stream) const = 0;
virtual size_t size() const = 0;
virtual bool zero() const = 0;
Stat &name(const std::string &name);
Stat &desc(const std::string &desc);
Stat &precision(int p);
Stat &flags(FormatFlags f);
Stat &prereq(const Stat &prereq);
Stat &subname(int index, const std::string &name);
Stat &subdesc(int index, const std::string &name);
public:
static bool less(Stat *stat1, Stat *stat2);
#ifdef STAT_DEBUG
int number;
#endif
};
// Scalar stats involved in formulas
class ScalarStat : public Stat
{
public:
ScalarStat(bool reg) : Stat(reg) {}
virtual result_t val() const = 0;
virtual bool zero() const;
virtual void display(std::ostream &stream) const;
};
void
VectorDisplay(std::ostream &stream, const std::string &myname,
const std::vector<std::string> *mysubnames,
const std::string &mydesc,
const std::vector<std::string> *mysubdescs,
int myprecision, FormatFlags myflags, const rvec_t &vec,
result_t mytotal);
// Vector stats involved in formulas
class VectorStat : public Stat
{
public:
VectorStat(bool reg) : Stat(reg) {}
virtual const rvec_t &val() const = 0;
virtual result_t total() const = 0;
virtual bool zero() const;
virtual void display(std::ostream &stream) const;
};
//////////////////////////////////////////////////////////////////////
//
// Simple Statistics
//
//////////////////////////////////////////////////////////////////////
template <typename T>
struct StatStor
{
public:
struct Params { };
private:
T data;
public:
StatStor(const Params &) : data(T()) {}
void set(T val, const Params &p) { data = val; }
void inc(T val, const Params &p) { data += val; }
void dec(T val, const Params &p) { data -= val; }
result_t val(const Params &p) const { return (result_t)data; }
T value(const Params &p) const { return data; }
};
template <typename T>
struct AvgStor
{
public:
struct Params { };
private:
T current;
mutable result_t total;
mutable Tick last;
public:
AvgStor(const Params &) : current(T()), total(0), last(0) { }
void set(T val, const Params &p) {
total += current * (curTick - last);
last = curTick;
current = val;
}
void inc(T val, const Params &p) { set(current + val, p); }
void dec(T val, const Params &p) { set(current - val, p); }
result_t val(const Params &p) const {
total += current * (curTick - last);
last = curTick;
return (result_t)(total + current) / (result_t)(curTick + 1);
}
T value(const Params &p) const { return current; }
};
template <typename T, template <typename T> class Storage, class Bin>
class ScalarBase : public ScalarStat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::Bin<storage_t> bin_t;
protected:
bin_t bin;
params_t params;
protected:
storage_t *data() { return bin.data(params); }
const storage_t *data() const {
return (const_cast<bin_t *>(&bin))->data(params);
}
protected:
// Copying stats is not allowed
ScalarBase(const ScalarBase &stat);
const ScalarBase &operator=(const ScalarBase &);
public:
result_t val() const { return data()->val(params); }
T value() const { return data()->value(params); }
public:
ScalarBase() : ScalarStat(true) {
bin.init(params);
setInit();
}
public:
// Common operators for stats
void operator++() { data()->inc(1, params); }
void operator--() { data()->dec(1, params); }
void operator++(int) { ++*this; }
void operator--(int) { --*this; }
template <typename U>
void operator=(const U& v) { data()->set(v, params); }
template <typename U>
void operator+=(const U& v) { data()->inc(v, params); }
template <typename U>
void operator-=(const U& v) { data()->dec(v, params); }
virtual size_t size() const { return 1; }
};
//////////////////////////////////////////////////////////////////////
//
// Vector Statistics
//
//////////////////////////////////////////////////////////////////////
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxy;
template <typename T, template <typename T> class Storage, class Bin>
class VectorBase : public VectorStat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
private:
mutable rvec_t *vec;
protected:
bin_t bin;
params_t params;
protected:
storage_t *data(int index) { return bin.data(index, params); }
const storage_t *data(int index) const {
return (const_cast<bin_t *>(&bin))->data(index, params);
}
protected:
// Copying stats is not allowed
VectorBase(const VectorBase &stat);
const VectorBase &operator=(const VectorBase &);
public:
const rvec_t &val() const {
if (vec)
vec->resize(size());
else
vec = new rvec_t(size());
for (int i = 0; i < size(); ++i)
(*vec)[i] = data(i)->val(params);
return *vec;
}
result_t total() const {
result_t total = 0.0;
for (int i = 0; i < size(); ++i)
total += data(i)->val(params);
return total;
}
public:
VectorBase() : VectorStat(true), vec(NULL) {}
~VectorBase() { if (vec) delete vec; }
VectorBase &init(size_t size) {
bin.init(size, params);
setInit();
return *this;
}
friend class ScalarProxy<T, Storage, Bin>;
ScalarProxy<T, Storage, Bin> operator[](int index);
virtual size_t size() const { return bin.size(); }
};
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxy : public ScalarStat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
private:
bin_t *bin;
params_t *params;
int index;
protected:
storage_t *data() { return bin->data(index, *params); }
const storage_t *data() const { return bin->data(index, *params); }
public:
result_t val() const { return data()->val(*params); }
T value() const { return data()->value(*params); }
public:
ScalarProxy(bin_t &b, params_t &p, int i)
: ScalarStat(false), bin(&b), params(&p), index(i) {}
ScalarProxy(const ScalarProxy &sp)
: ScalarStat(false), bin(sp.bin), params(sp.params), index(sp.index) {}
const ScalarProxy &operator=(const ScalarProxy &sp) {
bin = sp.bin;
params = sp.params;
index = sp.index;
return *this;
}
public:
// Common operators for stats
void operator++() { data()->inc(1, *params); }
void operator--() { data()->dec(1, *params); }
void operator++(int) { ++*this; }
void operator--(int) { --*this; }
template <typename U>
void operator=(const U& v) { data()->set(v, *params); }
template <typename U>
void operator+=(const U& v) { data()->inc(v, *params); }
template <typename U>
void operator-=(const U& v) { data()->dec(v, *params); }
virtual size_t size() const { return 1; }
};
template <typename T, template <typename T> class Storage, class Bin>
inline ScalarProxy<T, Storage, Bin>
VectorBase<T, Storage, Bin>::operator[](int index)
{
assert (index >= 0 && index < size());
return ScalarProxy<T, Storage, Bin>(bin, params, index);
}
template <typename T, template <typename T> class Storage, class Bin>
class VectorProxy;
template <typename T, template <typename T> class Storage, class Bin>
class Vector2dBase : public Stat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
protected:
size_t x;
size_t y;
bin_t bin;
params_t params;
std::vector<std::string> *y_subnames;
protected:
storage_t *data(int index) { return bin.data(index, params); }
const storage_t *data(int index) const {
return (const_cast<bin_t *>(&bin))->data(index, params);
}
protected:
// Copying stats is not allowed
Vector2dBase(const Vector2dBase &stat);
const Vector2dBase &operator=(const Vector2dBase &);
public:
Vector2dBase() : Stat(true) {}
~Vector2dBase() { }
Vector2dBase &init(size_t _x, size_t _y) {
x = _x;
y = _y;
bin.init(x * y, params);
setInit();
y_subnames = new std::vector<std::string>(y);
return *this;
}
/**
* This makes the assumption that if you're gonna subnames a 2d vector,
* you're subnaming across all y
*/
Vector2dBase &ysubnames(const char **names)
{
for (int i=0; i < y; ++i) {
(*y_subnames)[i] = names[i];
}
return *this;
}
Vector2dBase &ysubname(int index, const std::string subname)
{
(*y_subnames)[i] = subname.c_str();
return *this;
}
std::string ysubname(int i) const { return (*y_subnames)[i]; }
friend class VectorProxy<T, Storage, Bin>;
VectorProxy<T, Storage, Bin> operator[](int index);
virtual size_t size() const { return bin.size(); }
virtual bool zero() const { return data(0)->value(params) == 0.0; }
virtual void
display(std::ostream &out) const
{
bool have_subname = false;
for (int i = 0; i < x; ++i) {
if (!mysubname(i).empty())
have_subname = true;
}
rvec_t tot_vec(y);
result_t super_total = 0.0;
for (int i = 0; i < x; ++i) {
std::string subname;
if (have_subname) {
subname = mysubname(i);
if (subname.empty())
continue;
} else
subname = to_string(i);
int iy = i * y;
rvec_t vec(y);
result_t total = 0.0;
for (int j = 0; j < y; ++j) {
vec[j] = data(iy + j)->val(params);
tot_vec[j] += vec[j];
total += vec[j];
super_total += vec[j];
}
std::string desc;
if (mysubdesc(i).empty()) {
desc = mydesc();
} else {
desc = mysubdesc(i);
}
VectorDisplay(out, myname() + "_" + subname, y_subnames, desc, 0,
myprecision(), myflags(), vec, total);
}
if ((myflags() & ::Statistics::total) && (x > 1)) {
VectorDisplay(out, myname(), y_subnames, mydesc(), 0,
myprecision(), myflags(), tot_vec, super_total);
}
}
};
template <typename T, template <typename T> class Storage, class Bin>
class VectorProxy : public VectorStat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
private:
bin_t *bin;
params_t *params;
int offset;
int len;
private:
mutable rvec_t *vec;
storage_t *data(int index) {
assert(index < len);
return bin->data(offset + index, *params);
}
const storage_t *data(int index) const {
return (const_cast<bin_t *>(bin))->data(offset + index, *params);
}
public:
const rvec_t &val() const {
if (vec)
vec->resize(size());
else
vec = new rvec_t(size());
for (int i = 0; i < size(); ++i)
(*vec)[i] = data(i)->val(*params);
return *vec;
}
result_t total() const {
result_t total = 0.0;
for (int i = 0; i < size(); ++i)
total += data(i)->val(*params);
return total;
}
public:
VectorProxy(bin_t &b, params_t &p, int o, int l)
: VectorStat(false), bin(&b), params(&p), offset(o), len(l), vec(NULL)
{ }
VectorProxy(const VectorProxy &sp)
: VectorStat(false), bin(sp.bin), params(sp.params), offset(sp.offset),
len(sp.len), vec(NULL)
{ }
~VectorProxy() {
if (vec)
delete vec;
}
const VectorProxy &operator=(const VectorProxy &sp) {
bin = sp.bin;
params = sp.params;
offset = sp.offset;
len = sp.len;
if (vec)
delete vec;
vec = NULL;
return *this;
}
virtual size_t size() const { return len; }
ScalarProxy<T, Storage, Bin> operator[](int index) {
assert (index >= 0 && index < size());
return ScalarProxy<T, Storage, Bin>(*bin, *params, offset + index);
}
};
template <typename T, template <typename T> class Storage, class Bin>
inline VectorProxy<T, Storage, Bin>
Vector2dBase<T, Storage, Bin>::operator[](int index)
{
int offset = index * y;
assert (index >= 0 && offset < size());
return VectorProxy<T, Storage, Bin>(bin, params, offset, y);
}
//////////////////////////////////////////////////////////////////////
//
// Non formula statistics
//
//////////////////////////////////////////////////////////////////////
void DistDisplay(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
result_t min_val, result_t max_val,
result_t underflow, result_t overflow,
const rvec_t &vec, int min, int max, int bucket_size,
int size);
template <typename T>
struct DistStor
{
public:
struct Params
{
int min;
int max;
int bucket_size;
int size;
};
private:
T min_val;
T max_val;
T underflow;
T overflow;
std::vector<T> vec;
public:
DistStor(const Params &params)
: min_val(INT_MAX), max_val(INT_MIN), underflow(0), overflow(0),
vec(params.size) {
}
void sample(T val, int number, const Params &params) {
if (val < params.min)
underflow += number;
else if (val > params.max)
overflow += number;
else {
int index = (val - params.min) / params.bucket_size;
assert(index < size(params));
vec[index] += number;
}
if (val < min_val)
min_val = val;
if (val > max_val)
max_val = val;
}
size_t size(const Params &) const { return vec.size(); }
bool zero(const Params &params) const {
if (underflow != 0 || overflow != 0)
return true;
int s = size(params);
for (int i = 0; i < s; i++)
if (vec[i] != 0)
return true;
return false;
}
void display(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
const Params &params) const {
#ifdef STAT_DISPLAY_COMPAT
result_t min = params.min;
#else
result_t min = (min_val == INT_MAX) ? params.min : min_val;
#endif
result_t max = (max_val == INT_MIN) ? 0 : max_val;
rvec_t rvec(params.size);
for (int i = 0; i < params.size; ++i)
rvec[i] = vec[i];
DistDisplay(stream, name, desc, precision, flags,
(result_t)min, (result_t)max,
(result_t)underflow, (result_t)overflow,
rvec, params.min, params.max, params.bucket_size,
params.size);
}
};
void FancyDisplay(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
result_t mean, result_t variance);
template <typename T>
struct FancyStor
{
public:
struct Params {};
private:
T sum;
T squares;
int total;
public:
FancyStor(const Params &) : sum(0), squares(0), total(0) {}
void sample(T val, int number, const Params &) {
T value = val * number;
sum += value;
squares += value * value;
total += number;
}
void display(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
const Params &) const {
result_t mean = NAN;
result_t variance = NAN;
if (total != 0) {
result_t fsum = sum;
result_t fsq = squares;
result_t ftot = total;
mean = fsum / ftot;
variance = (ftot * fsq - (fsum * fsum)) / (ftot * (ftot - 1.0));
}
FancyDisplay(stream, name, desc, precision, flags, mean, variance);
}
size_t size(const Params &) const { return 1; }
bool zero(const Params &) const { return total == 0; }
};
template <typename T>
struct AvgFancy
{
public:
struct Params {};
private:
T sum;
T squares;
public:
AvgFancy(const Params &) : sum(0), squares(0) {}
void sample(T val, int number, const Params& p) {
T value = val * number;
sum += value;
squares += value * value;
}
void display(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
const Params &params) const {
result_t mean = sum / curTick;
result_t variance = (squares - sum * sum) / curTick;
FancyDisplay(stream, name, desc, precision, flags, mean, variance);
}
size_t size(const Params &params) const { return 1; }
bool zero(const Params &params) const { return sum == 0; }
};
template <typename T, template <typename T> class Storage, class Bin>
class DistBase : public Stat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::Bin<storage_t> bin_t;
protected:
bin_t bin;
params_t params;
protected:
storage_t *data() { return bin.data(params); }
const storage_t *data() const {
return (const_cast<bin_t *>(&bin))->data(params);
}
protected:
// Copying stats is not allowed
DistBase(const DistBase &stat);
const DistBase &operator=(const DistBase &);
public:
DistBase() : Stat(true) { }
~DistBase() { }
template <typename U>
void sample(const U& v, int n = 1) { data()->sample(v, n, params); }
virtual size_t size() const { return data()->size(params); }
virtual bool zero() const { return data()->zero(params); }
virtual void display(std::ostream &stream) const {
data()->display(stream, myname(), mydesc(), myprecision(), myflags(),
params);
}
};
template <typename T, template <typename T> class Storage, class Bin>
class VectorDistProxy;
template <typename T, template <typename T> class Storage, class Bin>
class VectorDistBase : public Stat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
protected:
bin_t bin;
params_t params;
protected:
storage_t *data(int index) { return bin.data(index, params); }
const storage_t *data(int index) const {
return (const_cast<bin_t *>(&bin))->data(index, params);
}
protected:
// Copying stats is not allowed
VectorDistBase(const VectorDistBase &stat);
const VectorDistBase &operator=(const VectorDistBase &);
public:
VectorDistBase() : Stat(true) { }
~VectorDistBase() { }
friend class VectorDistProxy<T, Storage, Bin>;
VectorDistProxy<T, Storage, Bin> operator[](int index);
const VectorDistProxy<T, Storage, Bin> operator[](int index) const;
virtual size_t size() const { return bin.size(); }
virtual bool zero() const { return false; }
virtual void display(std::ostream &stream) const;
};
template <typename T, template <typename T> class Storage, class Bin>
class VectorDistProxy : public Stat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::Bin<storage_t> bin_t;
typedef VectorDistBase<T, Storage, Bin> base_t;
private:
union {
base_t *stat;
const base_t *cstat;
};
int index;
protected:
storage_t *data() { return stat->data(index); }
const storage_t *data() const { return cstat->data(index); }
public:
VectorDistProxy(const VectorDistBase<T, Storage, Bin> &s, int i)
: Stat(false), cstat(&s), index(i) {}
VectorDistProxy(const VectorDistProxy &sp)
: Stat(false), cstat(sp.cstat), index(sp.index) {}
const VectorDistProxy &operator=(const VectorDistProxy &sp) {
cstat = sp.cstat; index = sp.index; return *this;
}
public:
template <typename U>
void sample(const U& v, int n = 1) { data()->sample(v, n, cstat->params); }
virtual size_t size() const { return 1; }
virtual bool zero() const {
return data()->zero(cstat->params);
}
virtual void display(std::ostream &stream) const {
std::stringstream name, desc;
if (!(cstat->mysubname(index).empty())) {
name << cstat->myname() << cstat->mysubname(index);
} else {
name << cstat->myname() << "_" << index;
}
if (!(cstat->mysubdesc(index).empty())) {
desc << cstat->mysubdesc(index);
} else {
desc << cstat->mydesc();
}
data()->display(stream, name.str(), desc.str(),
cstat->myprecision(), cstat->myflags(), cstat->params);
}
};
template <typename T, template <typename T> class Storage, class Bin>
inline VectorDistProxy<T, Storage, Bin>
VectorDistBase<T, Storage, Bin>::operator[](int index)
{
assert (index >= 0 && index < size());
return VectorDistProxy<T, Storage, Bin>(*this, index);
}
template <typename T, template <typename T> class Storage, class Bin>
inline const VectorDistProxy<T, Storage, Bin>
VectorDistBase<T, Storage, Bin>::operator[](int index) const
{
assert (index >= 0 && index < size());
return VectorDistProxy<T, Storage, Bin>(*this, index);
}
/**
* @todo Need a way to print Distribution totals across the Vector
*/
template <typename T, template <typename T> class Storage, class Bin>
void
VectorDistBase<T, Storage, Bin>::display(std::ostream &stream) const
{
for (int i = 0; i < size(); ++i) {
VectorDistProxy<T, Storage, Bin> proxy(*this, i);
proxy.display(stream);
}
}
#if 0
result_t
VectorDistBase<T, Storage, Bin>::total(int index) const
{
int total = 0;
for (int i=0; i < x_size(); ++i) {
total += data(i)->val(*params);
}
}
#endif
//////////////////////////////////////////////////////////////////////
//
// Formula Details
//
//////////////////////////////////////////////////////////////////////
class Node : public RefCounted
{
public:
virtual size_t size() const = 0;
virtual const rvec_t &val() const = 0;
virtual result_t total() const = 0;
};
typedef RefCountingPtr<Node> NodePtr;
class ScalarStatNode : public Node
{
private:
const ScalarStat &stat;
mutable rvec_t result;
public:
ScalarStatNode(const ScalarStat &s) : stat(s), result(1) {}
const rvec_t &val() const { result[0] = stat.val(); return result; }
virtual result_t total() const { return stat.val(); };
virtual size_t size() const { return 1; }
};
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxyNode : public Node
{
private:
const ScalarProxy<T, Storage, Bin> proxy;
mutable rvec_t result;
public:
ScalarProxyNode(const ScalarProxy<T, Storage, Bin> &p)
: proxy(p), result(1) { }
const rvec_t &val() const { result[0] = proxy.val(); return result; }
virtual result_t total() const { return proxy.val(); };
virtual size_t size() const { return 1; }
};
class VectorStatNode : public Node
{
private:
const VectorStat &stat;
public:
VectorStatNode(const VectorStat &s) : stat(s) {}
const rvec_t &val() const { return stat.val(); }
virtual result_t total() const { return stat.total(); };
virtual size_t size() const { return stat.size(); }
};
template <typename T>
class ConstNode : public Node
{
private:
rvec_t data;
public:
ConstNode(T s) : data(1, (result_t)s) {}
const rvec_t &val() const { return data; }
virtual result_t total() const { return data[0]; };
virtual size_t size() const { return 1; }
};
template <typename T>
class FunctorNode : public Node
{
private:
T &functor;
mutable rvec_t result;
public:
FunctorNode(T &f) : functor(f) { result.resize(1); }
const rvec_t &val() const {
result[0] = (result_t)functor();
return result;
}
virtual result_t total() const { return (result_t)functor(); };
virtual size_t size() const { return 1; }
};
template <typename T>
class ScalarNode : public Node
{
private:
T &scalar;
mutable rvec_t result;
public:
ScalarNode(T &s) : scalar(s) { result.resize(1); }
const rvec_t &val() const {
result[0] = (result_t)scalar;
return result;
}
virtual result_t total() const { return (result_t)scalar; };
virtual size_t size() const { return 1; }
};
template <class Op>
class UnaryNode : public Node
{
public:
NodePtr l;
mutable rvec_t result;
public:
UnaryNode(NodePtr p) : l(p) {}
const rvec_t &val() const {
const rvec_t &lvec = l->val();
int size = lvec.size();
assert(size > 0);
result.resize(size);
Op op;
for (int i = 0; i < size; ++i)
result[i] = op(lvec[i]);
return result;
}
result_t total() const {
Op op;
return op(l->total());
}
virtual size_t size() const { return l->size(); }
};
template <class Op>
class BinaryNode : public Node
{
public:
NodePtr l;
NodePtr r;
mutable rvec_t result;
public:
BinaryNode(NodePtr a, NodePtr b) : l(a), r(b) {}
const rvec_t &val() const {
Op op;
const rvec_t &lvec = l->val();
const rvec_t &rvec = r->val();
assert(lvec.size() > 0 && rvec.size() > 0);
if (lvec.size() == 1 && rvec.size() == 1) {
result.resize(1);
result[0] = op(lvec[0], rvec[0]);
} else if (lvec.size() == 1) {
int size = rvec.size();
result.resize(size);
for (int i = 0; i < size; ++i)
result[i] = op(lvec[0], rvec[i]);
} else if (rvec.size() == 1) {
int size = lvec.size();
result.resize(size);
for (int i = 0; i < size; ++i)
result[i] = op(lvec[i], rvec[0]);
} else if (rvec.size() == lvec.size()) {
int size = rvec.size();
result.resize(size);
for (int i = 0; i < size; ++i)
result[i] = op(lvec[i], rvec[i]);
}
return result;
}
result_t total() const {
Op op;
return op(l->total(), r->total());
}
virtual size_t size() const {
int ls = l->size();
int rs = r->size();
if (ls == 1)
return rs;
else if (rs == 1)
return ls;
else {
assert(ls == rs && "Node vector sizes are not equal");
return ls;
}
}
};
template <class Op>
class SumNode : public Node
{
public:
NodePtr l;
mutable rvec_t result;
public:
SumNode(NodePtr p) : l(p), result(1) {}
const rvec_t &val() const {
const rvec_t &lvec = l->val();
int size = lvec.size();
assert(size > 0);
result[0] = 0.0;
Op op;
for (int i = 0; i < size; ++i)
result[0] = op(result[0], lvec[i]);
return result;
}
result_t total() const {
const rvec_t &lvec = l->val();
int size = lvec.size();
assert(size > 0);
result_t result = 0.0;
Op op;
for (int i = 0; i < size; ++i)
result = op(result, lvec[i]);
return result;
}
virtual size_t size() const { return 1; }
};
class Temp
{
private:
NodePtr node;
public:
Temp(NodePtr n) : node(n) {}
Temp(const ScalarStat &s) : node(new ScalarStatNode(s)) {}
template <typename T, template <typename T> class Storage, class Bin>
Temp(const ScalarProxy<T, Storage, Bin> &p)
: node(new ScalarProxyNode<T, Storage, Bin>(p)) {}
Temp(const VectorStat &s) : node(new VectorStatNode(s)) {}
#define TempSCALAR(T) \
Temp(T value) : node(new ConstNode<T>(value)) {}
TempSCALAR( signed char);
TempSCALAR(unsigned char);
TempSCALAR( signed short);
TempSCALAR(unsigned short);
TempSCALAR( signed int);
TempSCALAR(unsigned int);
TempSCALAR( signed long);
TempSCALAR(unsigned long);
TempSCALAR( signed long long);
TempSCALAR(unsigned long long);
TempSCALAR(float);
TempSCALAR(double);
#undef TempSCALAR
operator NodePtr() { return node;}
};
//////////////////////////////////////////////////////////////////////
//
// Binning Interface
//
//////////////////////////////////////////////////////////////////////
class BinBase
{
private:
off_t memsize;
char *mem;
protected:
off_t size() const { return memsize; }
char *memory();
public:
BinBase(size_t size);
~BinBase();
};
} // namespace Detail
template <class BinType>
struct StatBin : public Detail::BinBase
{
static StatBin *&curBin() {
static StatBin *current = NULL;
return current;
}
static void setCurBin(StatBin *bin) { curBin() = bin; }
static StatBin *current() { assert(curBin()); return curBin(); }
static off_t &offset() {
static off_t offset = 0;
return offset;
}
static off_t new_offset(size_t size) {
size_t mask = sizeof(u_int64_t) - 1;
off_t off = offset();
// That one is for the last trailing flags byte.
offset() += (size + 1 + mask) & ~mask;
return off;
}
explicit StatBin(size_t size = 1024) : Detail::BinBase(size) {}
char *memory(off_t off) {
assert(offset() <= size());
return Detail::BinBase::memory() + off;
}
static void activate(StatBin &bin) { setCurBin(&bin); }
class BinBase
{
private:
int offset;
public:
BinBase() : offset(-1) {}
void allocate(size_t size) {
offset = new_offset(size);
}
char *access() {
assert(offset != -1);
return current()->memory(offset);
}
};
template <class Storage>
class Bin : public BinBase
{
public:
typedef typename Storage::Params Params;
public:
Bin() { allocate(sizeof(Storage)); }
bool initialized() const { return true; }
void init(const Params &params) { }
int size() const { return 1; }
Storage *data(const Params &params) {
assert(initialized());
char *ptr = access();
char *flags = ptr + sizeof(Storage);
if (!(*flags & 0x1)) {
*flags |= 0x1;
new (ptr) Storage(params);
}
return reinterpret_cast<Storage *>(ptr);
}
};
template <class Storage>
class VectorBin : public BinBase
{
public:
typedef typename Storage::Params Params;
private:
int _size;
public:
VectorBin() : _size(0) {}
bool initialized() const { return _size > 0; }
void init(int s, const Params &params) {
assert(!initialized());
assert(s > 0);
_size = s;
allocate(_size * sizeof(Storage));
}
int size() const { return _size; }
Storage *data(int index, const Params &params) {
assert(initialized());
assert(index >= 0 && index < size());
char *ptr = access();
char *flags = ptr + size() * sizeof(Storage);
if (!(*flags & 0x1)) {
*flags |= 0x1;
for (int i = 0; i < size(); ++i)
new (ptr + i * sizeof(Storage)) Storage(params);
}
return reinterpret_cast<Storage *>(ptr + index * sizeof(Storage));
}
};
};
class MainBinType {};
typedef StatBin<MainBinType> MainBin;
struct NoBin
{
template <class Storage>
struct Bin
{
public:
typedef typename Storage::Params Params;
private:
char ptr[sizeof(Storage)];
public:
bool initialized() const { return true; }
void init(const Params &params) {
new (ptr) Storage(params);
}
int size() const{ return 1; }
Storage *data(const Params &params) {
assert(initialized());
return reinterpret_cast<Storage *>(ptr);
}
};
template <class Storage>
struct VectorBin
{
public:
typedef typename Storage::Params Params;
private:
char *ptr;
int _size;
public:
VectorBin() : ptr(NULL) { }
~VectorBin() {
if (initialized())
delete [] ptr;
}
bool initialized() const { return ptr != NULL; }
void init(int s, const Params &params) {
assert(s > 0 && "size must be positive!");
assert(!initialized());
_size = s;
ptr = new char[_size * sizeof(Storage)];
for (int i = 0; i < _size; ++i)
new (ptr + i * sizeof(Storage)) Storage(params);
}
int size() const { return _size; }
Storage *data(int index, const Params &params) {
assert(initialized());
assert(index >= 0 && index < size());
return reinterpret_cast<Storage *>(ptr + index * sizeof(Storage));
}
};
};
//////////////////////////////////////////////////////////////////////
//
// Visible Statistics Types
//
//////////////////////////////////////////////////////////////////////
/**@defgroup VStats VisibleStatTypes
*/
/** @ingroup VStats
*This is the simplest counting stat. Default type is Counter, but can be
*anything (like double, int, etc). To bin, just designate the name of the bin
* when declaring. It can be used like a regular Counter.
*Example: Stat<> foo;
*foo += num_foos;
*/
template <typename T = Counter, class Bin = NoBin>
class Scalar : public Detail::ScalarBase<T, Detail::StatStor, Bin>
{
public:
typedef Detail::ScalarBase<T, Detail::StatStor, Bin> Base;
/** sets Stat equal to value of type U */
template <typename U>
void operator=(const U& v) { Base::operator=(v); }
};
/** @ingroup VStats
*This calculates averages over number of cycles. Additionally, the update per
*cycle is implicit if there is no change. In other words, if you want to know
*the average number of instructions in the IQ per cycle, then you can use this
* stat and not have to update it on cycles where there is no change.
*/
template <typename T = Counter, class Bin = NoBin>
class Average : public Detail::ScalarBase<T, Detail::AvgStor, Bin>
{
public:
typedef Detail::ScalarBase<T, Detail::AvgStor, Bin> Base;
/** sets Average equalt to value of type U*/
template <typename U>
void operator=(const U& v) { Base::operator=(v); }
};
/** @ingroup VStats
*This is a vector of type T, ideally suited to track stats across something like
* SMT threads.
*/
template <typename T = Counter, class Bin = NoBin>
class Vector : public Detail::VectorBase<T, Detail::StatStor, Bin>
{ };
/** @ingroup VStats
*This is a vector of Averages of type T
*/
template <typename T = Counter, class Bin = NoBin>
class AverageVector : public Detail::VectorBase<T, Detail::AvgStor, Bin>
{ };
/** @ingroup VStats
*This is a 2-dimensional vector. Intended usage is for something like tracking a
* Vector stat across another Vector like SMT threads.
*/
template <typename T = Counter, class Bin = NoBin>
class Vector2d : public Detail::Vector2dBase<T, Detail::StatStor, Bin>
{ };
/** @ingroup VStats
* This is essentially a Vector, but with minor differences. Where a
* Vector's index maps directly to what it's tracking, a Distribution's index can
* map to an arbitrary bucket type. For example, you could map 1-8 to bucket 0
* of a Distribution, and if ever there are 1-8 instructions within an IQ, increment
* bucket 0.
*/
template <typename T = Counter, class Bin = NoBin>
class Distribution : public Detail::DistBase<T, Detail::DistStor, Bin>
{
private:
typedef Detail::DistBase<T, Detail::DistStor, Bin> Base;
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
*This must be called to set some data members of the distribution
*as well as to allocate the appropriate storage size.
*@param min The minimum value of the Distribution
*@param max The maximum value of the Distribution (NOT the size!)
*@param bkt The size of the buckets to indicate mapping. I.e. if you have
*min=0, max=15, bkt=8, you will have two buckets, and anything from 0-7
*will go into bucket 0, and anything from 8-15 be in bucket 1.
*@return the Distribution itself.
*/
Distribution &init(T min, T max, int bkt) {
params.min = min;
params.max = max;
params.bucket_size = bkt;
params.size = (max - min) / bkt + 1;
bin.init(params);
setInit();
return *this;
}
};
/** @ingroup VStats
*This has the functionality of a standard deviation built into it. Update it
*every cycle, and at the end you will have the standard deviation.
*/
template <typename T = Counter, class Bin = NoBin>
class StandardDeviation : public Detail::DistBase<T, Detail::FancyStor, Bin>
{
private:
typedef Detail::DistBase<T, Detail::DistStor, Bin> Base;
typedef typename Detail::DistStor<T>::Params Params;
public:
StandardDeviation() {
bin.init(params);
setInit();
}
};
/** @ingroup VStats
*This also calculates standard deviations, but there is no need to
*update every cycle if there is no change, the stat will update for you.
*/
template <typename T = Counter, class Bin = NoBin>
class AverageDeviation : public Detail::DistBase<T, Detail::AvgFancy, Bin>
{
private:
typedef Detail::DistBase<T, Detail::DistStor, Bin> Base;
typedef typename Detail::DistStor<T>::Params Params;
public:
AverageDeviation() {
bin.init(params);
setInit();
}
};
/** @ingroup VStats
*This is a vector of Distributions. (The complexity increases!). Intended usage
* is for something like tracking a distribution across a vector like SMT threads.
*/
template <typename T = Counter, class Bin = NoBin>
class VectorDistribution
: public Detail::VectorDistBase<T, Detail::DistStor, Bin>
{
private:
typedef Detail::VectorDistBase<T, Detail::DistStor, Bin> Base;
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
*This must be called to set some data members and allocate storage space.
*@param size The size of the Vector
*@param min The minumum value of the Distribution
*@param max The maximum value of the Distribution (NOT the size)
*@param bkt The range of the bucket. I.e if min=0, max=15, and bkt=8,
*then 0-7 will be bucket 0, and 8-15 will be bucket 1.
*@return return the VectorDistribution itself.
*/
VectorDistribution &init(int size, T min, T max, int bkt) {
params.min = min;
params.max = max;
params.bucket_size = bkt;
params.size = (max - min) / bkt + 1;
bin.init(size, params);
setInit();
return *this;
}
};
/** @ingroup VStats
*This is a vector of Standard Deviations. Intended usage is for tracking
*Standard Deviations across a vector like SMT threads.
*/
template <typename T = Counter, class Bin = NoBin>
class VectorStandardDeviation
: public Detail::VectorDistBase<T, Detail::FancyStor, Bin>
{
private:
typedef Detail::VectorDistBase<T, Detail::FancyStor, Bin> Base;
typedef typename Detail::DistStor<T>::Params Params;
public:
/** This must be called to initialize some data members and allocate
* approprate storage space for the stat.
*@param size The size of the Vector
* @return the VectorStandardDeviation itself.
*/
VectorStandardDeviation &init(int size) {
bin.init(size, params);
setInit();
return *this;
}
};
/** @ingroup VStats
* This is a vector of Average Deviations. Intended usage is for tracking
*Average Deviations across a vector like SMT threads.
*/
template <typename T = Counter, class Bin = NoBin>
class VectorAverageDeviation
: public Detail::VectorDistBase<T, Detail::AvgFancy, Bin>
{
private:
typedef Detail::VectorDistBase<T, Detail::AvgFancy, Bin> Base;
typedef typename Detail::DistStor<T>::Params Params;
public:
/** This must be called to initialize some data members and allocate
* approprate storage space for the stat.
*@param size The size of the Vector
* @return The VectorAverageDeviation itself.
*/
VectorAverageDeviation &init(int size) {
bin.init(size, params);
setInit();
return *this;
}
};
/** @ingroup VStats
*This is a formula type. When defining it, you can just say:
*Formula foo = manchu + 3 / bar;
*The calculations for Formulas are all done at the end of the simulation, this
*really is just a definition of how to calculate at the end.
*/
class Formula : public Detail::VectorStat
{
private:
/** The root of the tree which represents the Formula */
Detail::NodePtr root;
friend class Detail::Temp;
public:
Formula() : VectorStat(true) { setInit(); }
Formula(Detail::Temp r) : VectorStat(true) {
root = r;
assert(size());
}
const Formula &operator=(Detail::Temp r) {
assert(!root && "Can't change formulas");
root = r;
assert(size());
return *this;
}
const Formula &operator+=(Detail::Temp r) {
using namespace Detail;
if (root)
root = NodePtr(new BinaryNode<std::plus<result_t> >(root, r));
else
root = r;
assert(size());
return *this;
}
const rvec_t &val() const { return root->val(); }
result_t total() const { return root->total(); }
size_t size() const {
if (!root)
return 0;
else
return root->size();
}
};
void check();
void dump(std::ostream &stream);
inline Detail::Temp
operator+(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::plus<result_t> >(l, r));
}
inline Detail::Temp
operator-(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::minus<result_t> >(l, r));
}
inline Detail::Temp
operator*(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::multiplies<result_t> >(l, r));
}
inline Detail::Temp
operator/(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::divides<result_t> >(l, r));
}
inline Detail::Temp
operator%(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::modulus<result_t> >(l, r));
}
inline Detail::Temp
operator-(Detail::Temp l)
{
using namespace Detail;
return NodePtr(new UnaryNode<std::negate<result_t> >(l));
}
template <typename T>
inline Detail::Temp
constant(T val)
{
using namespace Detail;
return NodePtr(new ConstNode<T>(val));
}
template <typename T>
inline Detail::Temp
functor(T &val)
{
using namespace Detail;
return NodePtr(new FunctorNode<T>(val));
}
template <typename T>
inline Detail::Temp
scalar(T &val)
{
using namespace Detail;
return NodePtr(new ScalarNode<T>(val));
}
inline Detail::Temp
sum(Detail::Temp val)
{
using namespace Detail;
return NodePtr(new SumNode<std::plus<result_t> >(val));
}
extern bool PrintDescriptions;
} // namespace statistics
#endif // __STATISTICS_HH__