cc9a838f4c
--HG-- extra : convert_revision : b0f93bd35d767fd3a520a9fed70a71d40b0056db
366 lines
9.8 KiB
C++
366 lines
9.8 KiB
C++
/*
|
|
* Copyright (c) 2003 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __EXEC_CONTEXT_HH__
|
|
#define __EXEC_CONTEXT_HH__
|
|
|
|
#include "sim/host.hh"
|
|
#include "mem/mem_req.hh"
|
|
|
|
// forward declaration: see functional_memory.hh
|
|
class FunctionalMemory;
|
|
class PhysicalMemory;
|
|
class BaseCPU;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
|
|
#include "targetarch/alpha_memory.hh"
|
|
class MemoryController;
|
|
|
|
#include "kern/tru64/kernel_stats.hh"
|
|
#include "sim/system.hh"
|
|
|
|
#else // !FULL_SYSTEM
|
|
|
|
#include "sim/prog.hh"
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
//
|
|
// The ExecContext object represents a functional context for
|
|
// instruction execution. It incorporates everything required for
|
|
// architecture-level functional simulation of a single thread.
|
|
//
|
|
|
|
class ExecContext
|
|
{
|
|
public:
|
|
enum Status { Unallocated, Active, Suspended, Halted };
|
|
|
|
private:
|
|
Status _status;
|
|
|
|
public:
|
|
Status status() const { return _status; }
|
|
|
|
// Unlike setStatus(), initStatus() has no side effects other than
|
|
// setting the _status variable.
|
|
void initStatus(Status init_status) { _status = init_status; }
|
|
|
|
void setStatus(Status new_status);
|
|
|
|
#ifdef FULL_SYSTEM
|
|
public:
|
|
KernelStats kernelStats;
|
|
#endif
|
|
|
|
public:
|
|
RegFile regs; // correct-path register context
|
|
|
|
// pointer to CPU associated with this context
|
|
BaseCPU *cpu;
|
|
|
|
// Index of hardware thread context on the CPU that this represents.
|
|
int thread_num;
|
|
|
|
// ID of this context w.r.t. the System or Process object to which
|
|
// it belongs. For full-system mode, this is the system CPU ID.
|
|
int cpu_id;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
|
|
FunctionalMemory *mem;
|
|
AlphaItb *itb;
|
|
AlphaDtb *dtb;
|
|
System *system;
|
|
|
|
// the following two fields are redundant, since we can always
|
|
// look them up through the system pointer, but we'll leave them
|
|
// here for now for convenience
|
|
MemoryController *memCtrl;
|
|
PhysicalMemory *physmem;
|
|
|
|
#else
|
|
Process *process;
|
|
|
|
FunctionalMemory *mem; // functional storage for process address space
|
|
|
|
// Address space ID. Note that this is used for TIMING cache
|
|
// simulation only; all functional memory accesses should use
|
|
// one of the FunctionalMemory pointers above.
|
|
short asid;
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
* number of executed instructions, for matching with syscall trace
|
|
* points in EIO files.
|
|
*/
|
|
Counter func_exe_insn;
|
|
|
|
//
|
|
// Count failed store conditionals so we can warn of apparent
|
|
// application deadlock situations.
|
|
unsigned storeCondFailures;
|
|
|
|
// constructor: initialize context from given process structure
|
|
#ifdef FULL_SYSTEM
|
|
ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
|
|
AlphaItb *_itb, AlphaDtb *_dtb, FunctionalMemory *_dem);
|
|
#else
|
|
ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
|
|
ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
|
|
int _asid);
|
|
#endif
|
|
virtual ~ExecContext() {}
|
|
|
|
virtual void takeOverFrom(ExecContext *oldContext);
|
|
|
|
void regStats(const std::string &name);
|
|
|
|
#ifdef FULL_SYSTEM
|
|
bool validInstAddr(Addr addr) { return true; }
|
|
bool validDataAddr(Addr addr) { return true; }
|
|
int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); }
|
|
int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); }
|
|
|
|
Fault translateInstReq(MemReqPtr req)
|
|
{
|
|
return itb->translate(req);
|
|
}
|
|
|
|
Fault translateDataReadReq(MemReqPtr req)
|
|
{
|
|
return dtb->translate(req, false);
|
|
}
|
|
|
|
Fault translateDataWriteReq(MemReqPtr req)
|
|
{
|
|
return dtb->translate(req, true);
|
|
}
|
|
|
|
#else
|
|
bool validInstAddr(Addr addr)
|
|
{ return process->validInstAddr(addr); }
|
|
|
|
bool validDataAddr(Addr addr)
|
|
{ return process->validDataAddr(addr); }
|
|
|
|
int getInstAsid() { return asid; }
|
|
int getDataAsid() { return asid; }
|
|
|
|
Fault dummyTranslation(MemReqPtr req)
|
|
{
|
|
#if 0
|
|
assert((req->vaddr >> 48 & 0xffff) == 0);
|
|
#endif
|
|
|
|
// put the asid in the upper 16 bits of the paddr
|
|
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
|
|
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
|
|
return No_Fault;
|
|
}
|
|
Fault translateInstReq(MemReqPtr req)
|
|
{
|
|
return dummyTranslation(req);
|
|
}
|
|
Fault translateDataReadReq(MemReqPtr req)
|
|
{
|
|
return dummyTranslation(req);
|
|
}
|
|
Fault translateDataWriteReq(MemReqPtr req)
|
|
{
|
|
return dummyTranslation(req);
|
|
}
|
|
|
|
#endif
|
|
|
|
template <class T>
|
|
Fault read(MemReqPtr req, T& data)
|
|
{
|
|
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
|
|
if (req->flags & LOCKED) {
|
|
MiscRegFile *cregs = &req->xc->regs.miscRegs;
|
|
cregs->lock_addr = req->paddr;
|
|
cregs->lock_flag = true;
|
|
}
|
|
#endif
|
|
return mem->read(req, data);
|
|
}
|
|
|
|
template <class T>
|
|
Fault write(MemReqPtr req, T& data)
|
|
{
|
|
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
|
|
|
|
MiscRegFile *cregs;
|
|
|
|
// If this is a store conditional, act appropriately
|
|
if (req->flags & LOCKED) {
|
|
cregs = &req->xc->regs.miscRegs;
|
|
|
|
if (req->flags & UNCACHEABLE) {
|
|
// Don't update result register (see stq_c in isa_desc)
|
|
req->result = 2;
|
|
req->xc->storeCondFailures = 0;//Needed? [RGD]
|
|
} else {
|
|
req->result = cregs->lock_flag;
|
|
if (!cregs->lock_flag ||
|
|
((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
|
|
cregs->lock_flag = false;
|
|
if (((++req->xc->storeCondFailures) % 100000) == 0) {
|
|
std::cerr << "Warning: "
|
|
<< req->xc->storeCondFailures
|
|
<< " consecutive store conditional failures "
|
|
<< "on cpu " << req->xc->cpu_id
|
|
<< std::endl;
|
|
}
|
|
return No_Fault;
|
|
}
|
|
else req->xc->storeCondFailures = 0;
|
|
}
|
|
}
|
|
|
|
// Need to clear any locked flags on other proccessors for
|
|
// this address. Only do this for succsful Store Conditionals
|
|
// and all other stores (WH64?). Unsuccessful Store
|
|
// Conditionals would have returned above, and wouldn't fall
|
|
// through.
|
|
for (int i = 0; i < system->execContexts.size(); i++){
|
|
cregs = &system->execContexts[i]->regs.miscRegs;
|
|
if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
|
|
cregs->lock_flag = false;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
return mem->write(req, data);
|
|
}
|
|
|
|
virtual bool misspeculating();
|
|
|
|
|
|
//
|
|
// New accessors for new decoder.
|
|
//
|
|
uint64_t readIntReg(int reg_idx)
|
|
{
|
|
return regs.intRegFile[reg_idx];
|
|
}
|
|
|
|
float readFloatRegSingle(int reg_idx)
|
|
{
|
|
return (float)regs.floatRegFile.d[reg_idx];
|
|
}
|
|
|
|
double readFloatRegDouble(int reg_idx)
|
|
{
|
|
return regs.floatRegFile.d[reg_idx];
|
|
}
|
|
|
|
uint64_t readFloatRegInt(int reg_idx)
|
|
{
|
|
return regs.floatRegFile.q[reg_idx];
|
|
}
|
|
|
|
void setIntReg(int reg_idx, uint64_t val)
|
|
{
|
|
regs.intRegFile[reg_idx] = val;
|
|
}
|
|
|
|
void setFloatRegSingle(int reg_idx, float val)
|
|
{
|
|
regs.floatRegFile.d[reg_idx] = (double)val;
|
|
}
|
|
|
|
void setFloatRegDouble(int reg_idx, double val)
|
|
{
|
|
regs.floatRegFile.d[reg_idx] = val;
|
|
}
|
|
|
|
void setFloatRegInt(int reg_idx, uint64_t val)
|
|
{
|
|
regs.floatRegFile.q[reg_idx] = val;
|
|
}
|
|
|
|
uint64_t readPC()
|
|
{
|
|
return regs.pc;
|
|
}
|
|
|
|
void setNextPC(uint64_t val)
|
|
{
|
|
regs.npc = val;
|
|
}
|
|
|
|
uint64_t readUniq()
|
|
{
|
|
return regs.miscRegs.uniq;
|
|
}
|
|
|
|
void setUniq(uint64_t val)
|
|
{
|
|
regs.miscRegs.uniq = val;
|
|
}
|
|
|
|
uint64_t readFpcr()
|
|
{
|
|
return regs.miscRegs.fpcr;
|
|
}
|
|
|
|
void setFpcr(uint64_t val)
|
|
{
|
|
regs.miscRegs.fpcr = val;
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
uint64_t readIpr(int idx, Fault &fault);
|
|
Fault setIpr(int idx, uint64_t val);
|
|
Fault hwrei();
|
|
void ev5_trap(Fault fault);
|
|
bool simPalCheck(int palFunc);
|
|
#endif
|
|
|
|
#ifndef FULL_SYSTEM
|
|
void syscall()
|
|
{
|
|
process->syscall(this);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
// for non-speculative execution context, spec_mode is always false
|
|
inline bool
|
|
ExecContext::misspeculating()
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif // __EXEC_CONTEXT_HH__
|