gem5/src/mem/protocol/MESI_SCMP_bankdirectory-L1cache.sm
Nathan Binkert 2f30950143 ruby: Import ruby and slicc from GEMS
We eventually plan to replace the m5 cache hierarchy with the GEMS
hierarchy, but for now we will make both live alongside eachother.
2009-05-11 10:38:43 -07:00

895 lines
30 KiB
Plaintext

/*
* Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id: MSI_MOSI_CMP_directory-L1cache.sm 1.10 05/01/19 15:55:40-06:00 beckmann@s0-28.cs.wisc.edu $
*
*/
machine(L1Cache, "MSI Directory L1 Cache CMP") {
// NODE L1 CACHE
// From this node's L1 cache TO the network
// a local L1 -> this L2 bank, currently ordered with directory forwarded requests
MessageBuffer requestFromL1Cache, network="To", virtual_network="0", ordered="false";
// a local L1 -> this L2 bank
MessageBuffer responseFromL1Cache, network="To", virtual_network="3", ordered="false";
MessageBuffer unblockFromL1Cache, network="To", virtual_network="4", ordered="false";
// To this node's L1 cache FROM the network
// a L2 bank -> this L1
MessageBuffer requestToL1Cache, network="From", virtual_network="1", ordered="false";
// a L2 bank -> this L1
MessageBuffer responseToL1Cache, network="From", virtual_network="3", ordered="false";
// STATES
enumeration(State, desc="Cache states", default="L1Cache_State_I") {
// Base states
NP, desc="Not present in either cache";
I, desc="a L1 cache entry Idle";
S, desc="a L1 cache entry Shared";
E, desc="a L1 cache entry Exclusive";
M, desc="a L1 cache entry Modified", format="!b";
// Transient States
IS, desc="L1 idle, issued GETS, have not seen response yet";
IM, desc="L1 idle, issued GETX, have not seen response yet";
SM, desc="L1 idle, issued GETX, have not seen response yet";
IS_I, desc="L1 idle, issued GETS, saw Inv before data because directory doesn't block on GETS hit";
M_I, desc="L1 replacing, waiting for ACK";
E_I, desc="L1 replacing, waiting for ACK";
}
// EVENTS
enumeration(Event, desc="Cache events") {
// L1 events
Load, desc="Load request from the home processor";
Ifetch, desc="I-fetch request from the home processor";
Store, desc="Store request from the home processor";
Inv, desc="Invalidate request from L2 bank";
// internal generated request
L1_Replacement, desc="L1 Replacement", format="!r";
// other requests
Fwd_GETX, desc="GETX from other processor";
Fwd_GETS, desc="GETS from other processor";
Fwd_GET_INSTR, desc="GET_INSTR from other processor";
Data, desc="Data for processor";
Data_Exclusive, desc="Data for processor";
DataS_fromL1, desc="data for GETS request, need to unblock directory";
Data_all_Acks, desc="Data for processor, all acks";
Ack, desc="Ack for processor";
Ack_all, desc="Last ack for processor";
WB_Ack, desc="Ack for replacement";
}
// TYPES
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
State CacheState, desc="cache state";
DataBlock DataBlk, desc="data for the block";
bool Dirty, default="false", desc="data is dirty";
}
// TBE fields
structure(TBE, desc="...") {
Address Address, desc="Physical address for this TBE";
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="Buffer for the data block";
bool Dirty, default="false", desc="data is dirty";
bool isPrefetch, desc="Set if this was caused by a prefetch";
int pendingAcks, default="0", desc="number of pending acks";
}
external_type(CacheMemory) {
bool cacheAvail(Address);
Address cacheProbe(Address);
void allocate(Address);
void deallocate(Address);
Entry lookup(Address);
void changePermission(Address, AccessPermission);
bool isTagPresent(Address);
}
external_type(TBETable) {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
TBETable L1_TBEs, template_hack="<L1Cache_TBE>";
CacheMemory L1IcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true";
CacheMemory L1DcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true";
MessageBuffer mandatoryQueue, ordered="false", rank="100", abstract_chip_ptr="true";
Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i";
int cache_state_to_int(State state);
// inclusive cache returns L1 entries only
Entry getL1CacheEntry(Address addr), return_by_ref="yes" {
if (L1DcacheMemory.isTagPresent(addr)) {
return L1DcacheMemory[addr];
} else {
return L1IcacheMemory[addr];
}
}
void changeL1Permission(Address addr, AccessPermission permission) {
if (L1DcacheMemory.isTagPresent(addr)) {
return L1DcacheMemory.changePermission(addr, permission);
} else if(L1IcacheMemory.isTagPresent(addr)) {
return L1IcacheMemory.changePermission(addr, permission);
} else {
error("cannot change permission, L1 block not present");
}
}
bool isL1CacheTagPresent(Address addr) {
return (L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr));
}
State getState(Address addr) {
if((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == true){
DEBUG_EXPR(id);
DEBUG_EXPR(addr);
}
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
if(L1_TBEs.isPresent(addr)) {
return L1_TBEs[addr].TBEState;
} else if (isL1CacheTagPresent(addr)) {
return getL1CacheEntry(addr).CacheState;
}
return State:NP;
}
void setState(Address addr, State state) {
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
// MUST CHANGE
if(L1_TBEs.isPresent(addr)) {
L1_TBEs[addr].TBEState := state;
}
if (isL1CacheTagPresent(addr)) {
getL1CacheEntry(addr).CacheState := state;
// Set permission
if (state == State:I) {
changeL1Permission(addr, AccessPermission:Invalid);
} else if (state == State:S || state == State:E) {
changeL1Permission(addr, AccessPermission:Read_Only);
} else if (state == State:M) {
changeL1Permission(addr, AccessPermission:Read_Write);
} else {
changeL1Permission(addr, AccessPermission:Busy);
}
}
}
Event mandatory_request_type_to_event(CacheRequestType type) {
if (type == CacheRequestType:LD) {
return Event:Load;
} else if (type == CacheRequestType:IFETCH) {
return Event:Ifetch;
} else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) {
return Event:Store;
} else {
error("Invalid CacheRequestType");
}
}
GenericMachineType getNondirectHitMachType(Address addr, MachineID sender) {
if (machineIDToMachineType(sender) == MachineType:L1Cache) {
return GenericMachineType:L1Cache_wCC; // NOTE direct L1 hits should not call this
} else if (machineIDToMachineType(sender) == MachineType:L2Cache) {
return GenericMachineType:L2Cache;
} else {
return ConvertMachToGenericMach(machineIDToMachineType(sender));
}
}
out_port(requestIntraChipL1Network_out, RequestMsg, requestFromL1Cache);
out_port(responseIntraChipL1Network_out, ResponseMsg, responseFromL1Cache);
out_port(unblockNetwork_out, ResponseMsg, unblockFromL1Cache);
// Response IntraChip L1 Network - response msg to this L1 cache
in_port(responseIntraChipL1Network_in, ResponseMsg, responseToL1Cache) {
if (responseIntraChipL1Network_in.isReady()) {
peek(responseIntraChipL1Network_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
if(in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
trigger(Event:Data_Exclusive, in_msg.Address);
} else if(in_msg.Type == CoherenceResponseType:DATA) {
if ( (getState(in_msg.Address) == State:IS || getState(in_msg.Address) == State:IS_I) &&
machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache ) {
trigger(Event:DataS_fromL1, in_msg.Address);
} else if ( (L1_TBEs[in_msg.Address].pendingAcks - in_msg.AckCount) == 0 ) {
trigger(Event:Data_all_Acks, in_msg.Address);
} else {
trigger(Event:Data, in_msg.Address);
}
} else if (in_msg.Type == CoherenceResponseType:ACK) {
if ( (L1_TBEs[in_msg.Address].pendingAcks - in_msg.AckCount) == 0 ) {
trigger(Event:Ack_all, in_msg.Address);
} else {
trigger(Event:Ack, in_msg.Address);
}
} else if (in_msg.Type == CoherenceResponseType:WB_ACK) {
trigger(Event:WB_Ack, in_msg.Address);
} else {
error("Invalid L1 response type");
}
}
}
}
// Request InterChip network - request from this L1 cache to the shared L2
in_port(requestIntraChipL1Network_in, RequestMsg, requestToL1Cache) {
if(requestIntraChipL1Network_in.isReady()) {
peek(requestIntraChipL1Network_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceRequestType:INV) {
trigger(Event:Inv, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:UPGRADE) {
// upgrade transforms to GETX due to race
trigger(Event:Fwd_GETX, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:GETS) {
trigger(Event:Fwd_GETS, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:GET_INSTR) {
trigger(Event:Fwd_GET_INSTR, in_msg.Address);
} else {
error("Invalid forwarded request type");
}
}
}
}
// Mandatory Queue betweens Node's CPU and it's L1 caches
in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
peek(mandatoryQueue_in, CacheMsg) {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
if (in_msg.Type == CacheRequestType:IFETCH) {
// ** INSTRUCTION ACCESS ***
// Check to see if it is in the OTHER L1
if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
// The block is in the wrong L1, put the request on the queue to the shared L2
trigger(Event:L1_Replacement, in_msg.Address);
}
if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
// The tag matches for the L1, so the L1 asks the L2 for it.
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
if (L1IcacheMemory.cacheAvail(in_msg.Address)) {
// L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
// No room in the L1, so we need to make room in the L1
trigger(Event:L1_Replacement, L1IcacheMemory.cacheProbe(in_msg.Address));
}
}
} else {
// *** DATA ACCESS ***
// Check to see if it is in the OTHER L1
if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
// The block is in the wrong L1, put the request on the queue to the shared L2
trigger(Event:L1_Replacement, in_msg.Address);
}
if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
// The tag matches for the L1, so the L1 ask the L2 for it
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
if (L1DcacheMemory.cacheAvail(in_msg.Address)) {
// L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
// No room in the L1, so we need to make room in the L1
trigger(Event:L1_Replacement, L1DcacheMemory.cacheProbe(in_msg.Address));
}
}
}
}
}
}
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(ai_issueGETINSTR, "ai", desc="Issue GETINSTR") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GET_INSTR;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(b_issueGETX, "b", desc="Issue GETX") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
DEBUG_EXPR(machineID);
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(c_issueUPGRADE, "c", desc="Issue GETX") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:UPGRADE;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(d_sendDataToRequestor, "d", desc="send data to requestor") {
peek(requestIntraChipL1Network_in, RequestMsg) {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.Dirty := getL1CacheEntry(address).Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.Dirty := getL1CacheEntry(address).Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") {
peek(requestIntraChipL1Network_in, RequestMsg) {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := L1_TBEs[address].DataBlk;
out_msg.Dirty := L1_TBEs[address].Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := L1_TBEs[address].DataBlk;
out_msg.Dirty := L1_TBEs[address].Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(e_sendAckToRequestor, "e", desc="send invalidate ack to requestor (could be L2 or L1)") {
peek(requestIntraChipL1Network_in, RequestMsg) {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(f_sendDataToL2, "f", desc="send data to the L2 cache") {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.Dirty := getL1CacheEntry(address).Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.MessageSize := MessageSizeType:Writeback_Data;
}
}
action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := L1_TBEs[address].DataBlk;
out_msg.Dirty := L1_TBEs[address].Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.MessageSize := MessageSizeType:Writeback_Data;
}
}
action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
peek(requestIntraChipL1Network_in, RequestMsg) {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Control;
out_msg.AckCount := 1;
}
}
}
action(g_issuePUTX, "g", desc="send data to the L2 cache") {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUTX;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.Dirty := getL1CacheEntry(address).Dirty;
out_msg.Requestor:= machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
if (getL1CacheEntry(address).Dirty) {
out_msg.MessageSize := MessageSizeType:Writeback_Data;
} else {
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(j_sendUnblock, "j", desc="send unblock to the L2 cache") {
enqueue(unblockNetwork_out, ResponseMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:UNBLOCK;
out_msg.Sender := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") {
enqueue(unblockNetwork_out, ResponseMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK;
out_msg.Sender := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
sequencer.readCallback(address, getL1CacheEntry(address).DataBlk);
}
action(x_external_load_hit, "x", desc="Notify sequencer the load completed.") {
peek(responseIntraChipL1Network_in, ResponseMsg) {
sequencer.readCallback(address, getL1CacheEntry(address).DataBlk, getNondirectHitMachType(in_msg.Address, in_msg.Sender), PrefetchBit:No);
}
}
action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk);
getL1CacheEntry(address).Dirty := true;
}
action(xx_external_store_hit, "\x", desc="Notify sequencer that store completed.") {
peek(responseIntraChipL1Network_in, ResponseMsg) {
sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk, getNondirectHitMachType(in_msg.Address, in_msg.Sender), PrefetchBit:No);
}
getL1CacheEntry(address).Dirty := true;
}
action(i_allocateTBE, "i", desc="Allocate TBE (isPrefetch=0, number of invalidates=0)") {
check_allocate(L1_TBEs);
L1_TBEs.allocate(address);
L1_TBEs[address].isPrefetch := false;
L1_TBEs[address].Dirty := getL1CacheEntry(address).Dirty;
L1_TBEs[address].DataBlk := getL1CacheEntry(address).DataBlk;
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
}
action(l_popRequestQueue, "l", desc="Pop incoming request queue and profile the delay within this virtual network") {
profileMsgDelay(2, requestIntraChipL1Network_in.dequeue_getDelayCycles());
}
action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue and profile the delay within this virtual network") {
profileMsgDelay(3, responseIntraChipL1Network_in.dequeue_getDelayCycles());
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
L1_TBEs.deallocate(address);
}
action(u_writeDataToL1Cache, "u", desc="Write data to cache") {
peek(responseIntraChipL1Network_in, ResponseMsg) {
getL1CacheEntry(address).DataBlk := in_msg.DataBlk;
getL1CacheEntry(address).Dirty := in_msg.Dirty;
}
}
action(q_updateAckCount, "q", desc="Update ack count") {
peek(responseIntraChipL1Network_in, ResponseMsg) {
L1_TBEs[address].pendingAcks := L1_TBEs[address].pendingAcks - in_msg.AckCount;
APPEND_TRANSITION_COMMENT(in_msg.AckCount);
APPEND_TRANSITION_COMMENT(" p: ");
APPEND_TRANSITION_COMMENT(L1_TBEs[address].pendingAcks);
}
}
action(z_stall, "z", desc="Stall") {
}
action(ff_deallocateL1CacheBlock, "\f", desc="Deallocate L1 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
if (L1DcacheMemory.isTagPresent(address)) {
L1DcacheMemory.deallocate(address);
} else {
L1IcacheMemory.deallocate(address);
}
}
action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") {
if (L1DcacheMemory.isTagPresent(address) == false) {
L1DcacheMemory.allocate(address);
}
}
action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") {
if (L1IcacheMemory.isTagPresent(address) == false) {
L1IcacheMemory.allocate(address);
}
}
action(zz_recycleRequestQueue, "zz", desc="recycle L1 request queue") {
requestIntraChipL1Network_in.recycle();
}
action(z_recycleMandatoryQueue, "\z", desc="recycle L1 request queue") {
mandatoryQueue_in.recycle();
}
//*****************************************************
// TRANSITIONS
//*****************************************************
// Transitions for Load/Store/Replacement/WriteBack from transient states
transition({IS, IM, IS_I, M_I, E_I, SM}, {Load, Ifetch, Store, L1_Replacement}) {
z_recycleMandatoryQueue;
}
// Transitions from Idle
transition({NP,I}, L1_Replacement) {
ff_deallocateL1CacheBlock;
}
transition({NP,I}, Load, IS) {
oo_allocateL1DCacheBlock;
i_allocateTBE;
a_issueGETS;
k_popMandatoryQueue;
}
transition({NP,I}, Ifetch, IS) {
pp_allocateL1ICacheBlock;
i_allocateTBE;
ai_issueGETINSTR;
k_popMandatoryQueue;
}
transition({NP,I}, Store, IM) {
oo_allocateL1DCacheBlock;
i_allocateTBE;
b_issueGETX;
k_popMandatoryQueue;
}
transition({NP, I}, Inv) {
fi_sendInvAck;
l_popRequestQueue;
}
// Transitions from Shared
transition(S, {Load,Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(S, Store, SM) {
i_allocateTBE;
c_issueUPGRADE;
k_popMandatoryQueue;
}
transition(S, L1_Replacement, I) {
ff_deallocateL1CacheBlock;
}
transition(S, Inv, I) {
fi_sendInvAck;
l_popRequestQueue;
}
// Transitions from Exclusive
transition(E, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(E, Store, M) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(E, L1_Replacement, M_I) {
// silent E replacement??
i_allocateTBE;
g_issuePUTX; // send data, but hold in case forwarded request
ff_deallocateL1CacheBlock;
}
transition(E, Inv, I) {
// don't send data
fi_sendInvAck;
l_popRequestQueue;
}
transition(E, Fwd_GETX, I) {
d_sendDataToRequestor;
l_popRequestQueue;
}
transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) {
d_sendDataToRequestor;
d2_sendDataToL2;
l_popRequestQueue;
}
// Transitions from Modified
transition(M, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(M, Store) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(M, L1_Replacement, M_I) {
i_allocateTBE;
g_issuePUTX; // send data, but hold in case forwarded request
ff_deallocateL1CacheBlock;
}
transition(M_I, WB_Ack, I) {
s_deallocateTBE;
o_popIncomingResponseQueue;
}
transition(M, Inv, I) {
f_sendDataToL2;
l_popRequestQueue;
}
transition(M_I, Inv, I) {
ft_sendDataToL2_fromTBE;
s_deallocateTBE;
l_popRequestQueue;
}
transition(M, Fwd_GETX, I) {
d_sendDataToRequestor;
l_popRequestQueue;
}
transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) {
d_sendDataToRequestor;
d2_sendDataToL2;
l_popRequestQueue;
}
transition(M_I, Fwd_GETX, I) {
dt_sendDataToRequestor_fromTBE;
s_deallocateTBE;
l_popRequestQueue;
}
transition(M_I, {Fwd_GETS, Fwd_GET_INSTR}, I) {
dt_sendDataToRequestor_fromTBE;
d2t_sendDataToL2_fromTBE;
s_deallocateTBE;
l_popRequestQueue;
}
// Transitions from IS
transition({IS, IS_I}, Inv, IS_I) {
fi_sendInvAck;
l_popRequestQueue;
}
transition(IS, Data_all_Acks, S) {
u_writeDataToL1Cache;
x_external_load_hit;
s_deallocateTBE;
j_sendUnblock;
o_popIncomingResponseQueue;
}
transition(IS_I, Data_all_Acks, I) {
u_writeDataToL1Cache;
x_external_load_hit;
s_deallocateTBE;
j_sendUnblock;
o_popIncomingResponseQueue;
}
transition(IS, DataS_fromL1, S) {
u_writeDataToL1Cache;
j_sendUnblock;
x_external_load_hit;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
transition(IS_I, DataS_fromL1, I) {
u_writeDataToL1Cache;
j_sendUnblock;
x_external_load_hit;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
// directory is blocked when sending exclusive data
transition(IS_I, Data_Exclusive, E) {
u_writeDataToL1Cache;
x_external_load_hit;
jj_sendExclusiveUnblock;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
transition(IS, Data_Exclusive, E) {
u_writeDataToL1Cache;
x_external_load_hit;
jj_sendExclusiveUnblock;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
// Transitions from IM
transition({IM, SM}, Inv, IM) {
fi_sendInvAck;
l_popRequestQueue;
}
transition(IM, Data, SM) {
u_writeDataToL1Cache;
q_updateAckCount;
o_popIncomingResponseQueue;
}
transition(IM, Data_all_Acks, M) {
u_writeDataToL1Cache;
xx_external_store_hit;
jj_sendExclusiveUnblock;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
// transitions from SM
transition({SM, IM}, Ack) {
q_updateAckCount;
o_popIncomingResponseQueue;
}
transition(SM, Ack_all, M) {
jj_sendExclusiveUnblock;
xx_external_store_hit;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
}