gem5/src/cpu/simple_thread.hh

421 lines
11 KiB
C++

/*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
#ifndef __CPU_SIMPLE_THREAD_HH__
#define __CPU_SIMPLE_THREAD_HH__
#include "arch/isa.hh"
#include "arch/isa_traits.hh"
#include "arch/registers.hh"
#include "arch/tlb.hh"
#include "arch/types.hh"
#include "base/types.hh"
#include "config/full_system.hh"
#include "config/the_isa.hh"
#include "cpu/thread_context.hh"
#include "cpu/thread_state.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/serialize.hh"
class BaseCPU;
#if FULL_SYSTEM
#include "sim/system.hh"
class FunctionProfile;
class ProfileNode;
class FunctionalPort;
class PhysicalPort;
namespace TheISA {
namespace Kernel {
class Statistics;
};
};
#else // !FULL_SYSTEM
#include "sim/process.hh"
#include "mem/page_table.hh"
class TranslatingPort;
#endif // FULL_SYSTEM
/**
* The SimpleThread object provides a combination of the ThreadState
* object and the ThreadContext interface. It implements the
* ThreadContext interface so that a ProxyThreadContext class can be
* made using SimpleThread as the template parameter (see
* thread_context.hh). It adds to the ThreadState object by adding all
* the objects needed for simple functional execution, including a
* simple architectural register file, and pointers to the ITB and DTB
* in full system mode. For CPU models that do not need more advanced
* ways to hold state (i.e. a separate physical register file, or
* separate fetch and commit PC's), this SimpleThread class provides
* all the necessary state for full architecture-level functional
* simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
* examples.
*/
class SimpleThread : public ThreadState
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
public:
typedef ThreadContext::Status Status;
protected:
union {
FloatReg f[TheISA::NumFloatRegs];
FloatRegBits i[TheISA::NumFloatRegs];
} floatRegs;
TheISA::IntReg intRegs[TheISA::NumIntRegs];
TheISA::ISA isa; // one "instance" of the current ISA.
/** The current microcode pc for the currently executing macro
* operation.
*/
MicroPC microPC;
/** The next microcode pc for the currently executing macro
* operation.
*/
MicroPC nextMicroPC;
/** The current pc.
*/
Addr PC;
/** The next pc.
*/
Addr nextPC;
/** The next next pc.
*/
Addr nextNPC;
public:
// pointer to CPU associated with this SimpleThread
BaseCPU *cpu;
ProxyThreadContext<SimpleThread> *tc;
System *system;
TheISA::TLB *itb;
TheISA::TLB *dtb;
// constructor: initialize SimpleThread from given process structure
#if FULL_SYSTEM
SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
TheISA::TLB *_itb, TheISA::TLB *_dtb,
bool use_kernel_stats = true);
#else
SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
TheISA::TLB *_itb, TheISA::TLB *_dtb);
#endif
SimpleThread();
virtual ~SimpleThread();
virtual void takeOverFrom(ThreadContext *oldContext);
void regStats(const std::string &name);
void copyTC(ThreadContext *context);
void copyState(ThreadContext *oldContext);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
/***************************************************************
* SimpleThread functions to provide CPU with access to various
* state.
**************************************************************/
/** Returns the pointer to this SimpleThread's ThreadContext. Used
* when a ThreadContext must be passed to objects outside of the
* CPU.
*/
ThreadContext *getTC() { return tc; }
void demapPage(Addr vaddr, uint64_t asn)
{
itb->demapPage(vaddr, asn);
dtb->demapPage(vaddr, asn);
}
void demapInstPage(Addr vaddr, uint64_t asn)
{
itb->demapPage(vaddr, asn);
}
void demapDataPage(Addr vaddr, uint64_t asn)
{
dtb->demapPage(vaddr, asn);
}
#if FULL_SYSTEM
void dumpFuncProfile();
Fault hwrei();
bool simPalCheck(int palFunc);
#endif
/*******************************************
* ThreadContext interface functions.
******************************************/
BaseCPU *getCpuPtr() { return cpu; }
TheISA::TLB *getITBPtr() { return itb; }
TheISA::TLB *getDTBPtr() { return dtb; }
System *getSystemPtr() { return system; }
#if FULL_SYSTEM
FunctionalPort *getPhysPort() { return physPort; }
/** Return a virtual port. This port cannot be cached locally in an object.
* After a CPU switch it may point to the wrong memory object which could
* mean stale data.
*/
VirtualPort *getVirtPort() { return virtPort; }
#endif
Status status() const { return _status; }
void setStatus(Status newStatus) { _status = newStatus; }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Halted.
void halt();
virtual bool misspeculating();
Fault instRead(RequestPtr &req)
{
panic("instRead not implemented");
// return funcPhysMem->read(req, inst);
return NoFault;
}
void copyArchRegs(ThreadContext *tc);
void clearArchRegs()
{
microPC = 0;
nextMicroPC = 1;
PC = nextPC = nextNPC = 0;
memset(intRegs, 0, sizeof(intRegs));
memset(floatRegs.i, 0, sizeof(floatRegs.i));
}
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
int flatIndex = isa.flattenIntIndex(reg_idx);
assert(flatIndex < TheISA::NumIntRegs);
uint64_t regVal = intRegs[flatIndex];
DPRINTF(IntRegs, "Reading int reg %d as %#x.\n", reg_idx, regVal);
return regVal;
}
FloatReg readFloatReg(int reg_idx)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
return floatRegs.f[flatIndex];
}
FloatRegBits readFloatRegBits(int reg_idx)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
return floatRegs.i[flatIndex];
}
void setIntReg(int reg_idx, uint64_t val)
{
int flatIndex = isa.flattenIntIndex(reg_idx);
assert(flatIndex < TheISA::NumIntRegs);
DPRINTF(IntRegs, "Setting int reg %d to %#x.\n", reg_idx, val);
intRegs[flatIndex] = val;
}
void setFloatReg(int reg_idx, FloatReg val)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
floatRegs.f[flatIndex] = val;
}
void setFloatRegBits(int reg_idx, FloatRegBits val)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
floatRegs.i[flatIndex] = val;
}
uint64_t readPC()
{
return PC;
}
void setPC(uint64_t val)
{
PC = val;
}
uint64_t readMicroPC()
{
return microPC;
}
void setMicroPC(uint64_t val)
{
microPC = val;
}
uint64_t readNextPC()
{
return nextPC;
}
void setNextPC(uint64_t val)
{
nextPC = val;
}
uint64_t readNextMicroPC()
{
return nextMicroPC;
}
void setNextMicroPC(uint64_t val)
{
nextMicroPC = val;
}
uint64_t readNextNPC()
{
#if ISA_HAS_DELAY_SLOT
return nextNPC;
#else
return nextPC + sizeof(TheISA::MachInst);
#endif
}
void setNextNPC(uint64_t val)
{
#if ISA_HAS_DELAY_SLOT
nextNPC = val;
#endif
}
MiscReg
readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
{
return isa.readMiscRegNoEffect(misc_reg);
}
MiscReg
readMiscReg(int misc_reg, ThreadID tid = 0)
{
return isa.readMiscReg(misc_reg, tc);
}
void
setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
{
return isa.setMiscRegNoEffect(misc_reg, val);
}
void
setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
{
return isa.setMiscReg(misc_reg, val, tc);
}
int
flattenIntIndex(int reg)
{
return isa.flattenIntIndex(reg);
}
int
flattenFloatIndex(int reg)
{
return isa.flattenFloatIndex(reg);
}
unsigned readStCondFailures() { return storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ storeCondFailures = sc_failures; }
#if !FULL_SYSTEM
void syscall(int64_t callnum)
{
process->syscall(callnum, tc);
}
#endif
};
// for non-speculative execution context, spec_mode is always false
inline bool
SimpleThread::misspeculating()
{
return false;
}
#endif // __CPU_CPU_EXEC_CONTEXT_HH__