gem5/src/cpu/simple/base.hh

403 lines
11 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Dave Greene
* Nathan Binkert
*/
#ifndef __CPU_SIMPLE_BASE_HH__
#define __CPU_SIMPLE_BASE_HH__
#include "arch/predecoder.hh"
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "config/the_isa.hh"
#include "cpu/base.hh"
#include "cpu/simple_thread.hh"
#include "cpu/pc_event.hh"
#include "cpu/static_inst.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "mem/request.hh"
#include "sim/eventq.hh"
#include "sim/system.hh"
// forward declarations
#if FULL_SYSTEM
class Processor;
namespace TheISA
{
class ITB;
class DTB;
}
class MemObject;
#else
class Process;
#endif // FULL_SYSTEM
class RemoteGDB;
class GDBListener;
namespace TheISA
{
class Predecoder;
}
class ThreadContext;
class Checkpoint;
namespace Trace {
class InstRecord;
}
class BaseSimpleCPUParams;
class BaseSimpleCPU : public BaseCPU
{
protected:
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
protected:
Trace::InstRecord *traceData;
inline void checkPcEventQueue() {
Addr oldpc;
do {
oldpc = thread->readPC();
system->pcEventQueue.service(tc);
} while (oldpc != thread->readPC());
}
public:
void wakeup();
void zero_fill_64(Addr addr) {
static int warned = 0;
if (!warned) {
warn ("WH64 is not implemented");
warned = 1;
}
};
public:
BaseSimpleCPU(BaseSimpleCPUParams *params);
virtual ~BaseSimpleCPU();
public:
/** SimpleThread object, provides all the architectural state. */
SimpleThread *thread;
/** ThreadContext object, provides an interface for external
* objects to modify this thread's state.
*/
ThreadContext *tc;
protected:
enum Status {
Idle,
Running,
ITBWaitResponse,
IcacheRetry,
IcacheWaitResponse,
IcacheWaitSwitch,
DTBWaitResponse,
DcacheRetry,
DcacheWaitResponse,
DcacheWaitSwitch,
SwitchedOut
};
Status _status;
public:
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
// current instruction
TheISA::MachInst inst;
// The predecoder
TheISA::Predecoder predecoder;
StaticInstPtr curStaticInst;
StaticInstPtr curMacroStaticInst;
//This is the offset from the current pc that fetch should be performed at
Addr fetchOffset;
//This flag says to stay at the current pc. This is useful for
//instructions which go beyond MachInst boundaries.
bool stayAtPC;
void checkForInterrupts();
void setupFetchRequest(Request *req);
void preExecute();
void postExecute();
void advancePC(Fault fault);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
// statistics
virtual void regStats();
virtual void resetStats();
// number of simulated instructions
Counter numInst;
Counter startNumInst;
Stats::Scalar numInsts;
void countInst()
{
numInst++;
numInsts++;
thread->funcExeInst++;
}
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// Mask to align PCs to MachInst sized boundaries
static const Addr PCMask = ~((Addr)sizeof(TheISA::MachInst) - 1);
// number of simulated memory references
Stats::Scalar numMemRefs;
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
// number of idle cycles
Stats::Average notIdleFraction;
Stats::Formula idleFraction;
// number of cycles stalled for I-cache responses
Stats::Scalar icacheStallCycles;
Counter lastIcacheStall;
// number of cycles stalled for I-cache retries
Stats::Scalar icacheRetryCycles;
Counter lastIcacheRetry;
// number of cycles stalled for D-cache responses
Stats::Scalar dcacheStallCycles;
Counter lastDcacheStall;
// number of cycles stalled for D-cache retries
Stats::Scalar dcacheRetryCycles;
Counter lastDcacheRetry;
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("BaseSimpleCPU::getEA() not implemented\n");
M5_DUMMY_RETURN}
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntRegOperand(const StaticInst *si, int idx)
{
return thread->readIntReg(si->srcRegIdx(idx));
}
FloatReg readFloatRegOperand(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return thread->readFloatReg(reg_idx);
}
FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return thread->readFloatRegBits(reg_idx);
}
void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
{
thread->setIntReg(si->destRegIdx(idx), val);
}
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
thread->setFloatReg(reg_idx, val);
}
void setFloatRegOperandBits(const StaticInst *si, int idx,
FloatRegBits val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
thread->setFloatRegBits(reg_idx, val);
}
uint64_t readPC() { return thread->readPC(); }
uint64_t readMicroPC() { return thread->readMicroPC(); }
uint64_t readNextPC() { return thread->readNextPC(); }
uint64_t readNextMicroPC() { return thread->readNextMicroPC(); }
uint64_t readNextNPC() { return thread->readNextNPC(); }
void setPC(uint64_t val) { thread->setPC(val); }
void setMicroPC(uint64_t val) { thread->setMicroPC(val); }
void setNextPC(uint64_t val) { thread->setNextPC(val); }
void setNextMicroPC(uint64_t val) { thread->setNextMicroPC(val); }
void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
MiscReg readMiscRegNoEffect(int misc_reg)
{
return thread->readMiscRegNoEffect(misc_reg);
}
MiscReg readMiscReg(int misc_reg)
{
return thread->readMiscReg(misc_reg);
}
void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
{
return thread->setMiscRegNoEffect(misc_reg, val);
}
void setMiscReg(int misc_reg, const MiscReg &val)
{
return thread->setMiscReg(misc_reg, val);
}
MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->readMiscRegNoEffect(reg_idx);
}
MiscReg readMiscRegOperand(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->readMiscReg(reg_idx);
}
void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->setMiscRegNoEffect(reg_idx, val);
}
void setMiscRegOperand(
const StaticInst *si, int idx, const MiscReg &val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->setMiscReg(reg_idx, val);
}
void demapPage(Addr vaddr, uint64_t asn)
{
thread->demapPage(vaddr, asn);
}
void demapInstPage(Addr vaddr, uint64_t asn)
{
thread->demapInstPage(vaddr, asn);
}
void demapDataPage(Addr vaddr, uint64_t asn)
{
thread->demapDataPage(vaddr, asn);
}
unsigned readStCondFailures() {
return thread->readStCondFailures();
}
void setStCondFailures(unsigned sc_failures) {
thread->setStCondFailures(sc_failures);
}
MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
{
panic("Simple CPU models do not support multithreaded "
"register access.\n");
}
void setRegOtherThread(int regIdx, const MiscReg &val,
ThreadID tid = InvalidThreadID)
{
panic("Simple CPU models do not support multithreaded "
"register access.\n");
}
//Fault CacheOp(uint8_t Op, Addr EA);
#if FULL_SYSTEM
Fault hwrei() { return thread->hwrei(); }
void ev5_trap(Fault fault) { fault->invoke(tc); }
bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
#else
void syscall(int64_t callnum) { thread->syscall(callnum); }
#endif
bool misspeculating() { return thread->misspeculating(); }
ThreadContext *tcBase() { return tc; }
};
#endif // __CPU_SIMPLE_BASE_HH__