gem5/src/arch/sparc/tlb.cc
Ali Saidi ba14d6d0e1 Bug fixes in the TLB
Make our replacement algorithm same as legion (although not same as the spec)
itb should be 64 entries not 48

src/arch/sparc/tlb.cc:
    Bug fixes in the TLB
    Make our replacement algorithm same as legion (although not same as the spec)
src/arch/sparc/tlb.hh:
    Make our replacement algorithm same as legion (although not same as the spec)
src/python/m5/objects/SparcTLB.py:
    itb should be 64 entries too

--HG--
extra : convert_revision : 1b5cb3597091e3cfe293e94f6f2219b1e621c35f
2006-12-27 14:38:07 -05:00

1225 lines
36 KiB
C++

/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#include "arch/sparc/asi.hh"
#include "arch/sparc/miscregfile.hh"
#include "arch/sparc/tlb.hh"
#include "base/bitfield.hh"
#include "base/trace.hh"
#include "cpu/thread_context.hh"
#include "cpu/base.hh"
#include "mem/packet_access.hh"
#include "mem/request.hh"
#include "sim/builder.hh"
/* @todo remove some of the magic constants. -- ali
* */
namespace SparcISA
{
TLB::TLB(const std::string &name, int s)
: SimObject(name), size(s), usedEntries(0), lastReplaced(0),
cacheValid(false)
{
// To make this work you'll have to change the hypervisor and OS
if (size > 64)
fatal("SPARC T1 TLB registers don't support more than 64 TLB entries.");
tlb = new TlbEntry[size];
memset(tlb, 0, sizeof(TlbEntry) * size);
for (int x = 0; x < size; x++)
freeList.push_back(&tlb[x]);
}
void
TLB::clearUsedBits()
{
MapIter i;
for (i = lookupTable.begin(); i != lookupTable.end(); i++) {
TlbEntry *t = i->second;
if (!t->pte.locked()) {
t->used = false;
usedEntries--;
}
}
}
void
TLB::insert(Addr va, int partition_id, int context_id, bool real,
const PageTableEntry& PTE, int entry)
{
MapIter i;
TlbEntry *new_entry = NULL;
TlbRange tr;
int x;
cacheValid = false;
tr.va = va;
tr.size = PTE.size() - 1;
tr.contextId = context_id;
tr.partitionId = partition_id;
tr.real = real;
DPRINTF(TLB, "TLB: Inserting TLB Entry; va=%#x pa=%#x pid=%d cid=%d r=%d entryid=%d\n",
va, PTE.paddr(), partition_id, context_id, (int)real, entry);
// Demap any entry that conflicts
i = lookupTable.find(tr);
if (i != lookupTable.end()) {
i->second->valid = false;
if (i->second->used) {
i->second->used = false;
usedEntries--;
}
freeList.push_front(i->second);
DPRINTF(TLB, "TLB: Found conflicting entry %#X , deleting it\n",
i->second);
lookupTable.erase(i);
}
if (entry != -1) {
assert(entry < size && entry >= 0);
new_entry = &tlb[entry];
} else {
if (!freeList.empty()) {
new_entry = freeList.front();
} else {
x = lastReplaced;
do {
++x;
if (x == size)
x = 0;
if (x == lastReplaced)
goto insertAllLocked;
} while (tlb[x].pte.locked());
lastReplaced = x;
new_entry = &tlb[x];
lookupTable.erase(new_entry->range);
}
/*
for (x = 0; x < size; x++) {
if (!tlb[x].valid || !tlb[x].used) {
new_entry = &tlb[x];
break;
}
}*/
}
insertAllLocked:
// Update the last ently if their all locked
if (!new_entry) {
new_entry = &tlb[size-1];
lookupTable.erase(new_entry->range);
}
freeList.remove(new_entry);
DPRINTF(TLB, "Using entry: %#X\n", new_entry);
assert(PTE.valid());
new_entry->range.va = va;
new_entry->range.size = PTE.size() - 1;
new_entry->range.partitionId = partition_id;
new_entry->range.contextId = context_id;
new_entry->range.real = real;
new_entry->pte = PTE;
new_entry->used = true;;
new_entry->valid = true;
usedEntries++;
i = lookupTable.insert(new_entry->range, new_entry);
assert(i != lookupTable.end());
// If all entries have there used bit set, clear it on them all, but the
// one we just inserted
if (usedEntries == size) {
clearUsedBits();
new_entry->used = true;
usedEntries++;
}
}
TlbEntry*
TLB::lookup(Addr va, int partition_id, bool real, int context_id)
{
MapIter i;
TlbRange tr;
TlbEntry *t;
DPRINTF(TLB, "TLB: Looking up entry va=%#x pid=%d cid=%d r=%d\n",
va, partition_id, context_id, real);
// Assemble full address structure
tr.va = va;
tr.size = MachineBytes;
tr.contextId = context_id;
tr.partitionId = partition_id;
tr.real = real;
// Try to find the entry
i = lookupTable.find(tr);
if (i == lookupTable.end()) {
DPRINTF(TLB, "TLB: No valid entry found\n");
return NULL;
}
// Mark the entries used bit and clear other used bits in needed
t = i->second;
DPRINTF(TLB, "TLB: Valid entry found pa: %#x size: %#x\n", t->pte.paddr(),
t->pte.size());
if (!t->used) {
t->used = true;
usedEntries++;
if (usedEntries == size) {
clearUsedBits();
t->used = true;
usedEntries++;
}
}
return t;
}
void
TLB::dumpAll()
{
MapIter i;
for (int x = 0; x < size; x++) {
if (tlb[x].valid) {
DPRINTFN("%4d: %#2x:%#2x %c %#4x %#8x %#8x %#16x\n",
x, tlb[x].range.partitionId, tlb[x].range.contextId,
tlb[x].range.real ? 'R' : ' ', tlb[x].range.size,
tlb[x].range.va, tlb[x].pte.paddr(), tlb[x].pte());
}
}
}
void
TLB::demapPage(Addr va, int partition_id, bool real, int context_id)
{
TlbRange tr;
MapIter i;
DPRINTF(IPR, "TLB: Demapping Page va=%#x pid=%#d cid=%d r=%d\n",
va, partition_id, context_id, real);
cacheValid = false;
// Assemble full address structure
tr.va = va;
tr.size = MachineBytes;
tr.contextId = context_id;
tr.partitionId = partition_id;
tr.real = real;
// Demap any entry that conflicts
i = lookupTable.find(tr);
if (i != lookupTable.end()) {
DPRINTF(IPR, "TLB: Demapped page\n");
i->second->valid = false;
if (i->second->used) {
i->second->used = false;
usedEntries--;
}
freeList.push_front(i->second);
DPRINTF(TLB, "Freeing TLB entry : %#X\n", i->second);
lookupTable.erase(i);
}
}
void
TLB::demapContext(int partition_id, int context_id)
{
int x;
DPRINTF(IPR, "TLB: Demapping Context pid=%#d cid=%d\n",
partition_id, context_id);
cacheValid = false;
for (x = 0; x < size; x++) {
if (tlb[x].range.contextId == context_id &&
tlb[x].range.partitionId == partition_id) {
if (tlb[x].valid == true) {
freeList.push_front(&tlb[x]);
DPRINTF(TLB, "Freeing TLB entry : %#X\n", &tlb[x]);
}
tlb[x].valid = false;
if (tlb[x].used) {
tlb[x].used = false;
usedEntries--;
}
lookupTable.erase(tlb[x].range);
}
}
}
void
TLB::demapAll(int partition_id)
{
int x;
DPRINTF(TLB, "TLB: Demapping All pid=%#d\n", partition_id);
cacheValid = false;
for (x = 0; x < size; x++) {
if (!tlb[x].pte.locked() && tlb[x].range.partitionId == partition_id) {
if (tlb[x].valid == true){
freeList.push_front(&tlb[x]);
DPRINTF(TLB, "Freeing TLB entry : %#X\n", &tlb[x]);
}
tlb[x].valid = false;
if (tlb[x].used) {
tlb[x].used = false;
usedEntries--;
}
lookupTable.erase(tlb[x].range);
}
}
}
void
TLB::invalidateAll()
{
int x;
cacheValid = false;
freeList.clear();
for (x = 0; x < size; x++) {
if (tlb[x].valid == true)
freeList.push_back(&tlb[x]);
tlb[x].valid = false;
}
usedEntries = 0;
}
uint64_t
TLB::TteRead(int entry) {
if (entry >= size)
panic("entry: %d\n", entry);
assert(entry < size);
if (tlb[entry].valid)
return tlb[entry].pte();
else
return (uint64_t)-1ll;
}
uint64_t
TLB::TagRead(int entry) {
assert(entry < size);
uint64_t tag;
if (!tlb[entry].valid)
return (uint64_t)-1ll;
tag = tlb[entry].range.contextId;
tag |= tlb[entry].range.va;
tag |= (uint64_t)tlb[entry].range.partitionId << 61;
tag |= tlb[entry].range.real ? ULL(1) << 60 : 0;
tag |= (uint64_t)~tlb[entry].pte._size() << 56;
return tag;
}
bool
TLB::validVirtualAddress(Addr va, bool am)
{
if (am)
return true;
if (va >= StartVAddrHole && va <= EndVAddrHole)
return false;
return true;
}
void
TLB::writeSfsr(ThreadContext *tc, int reg, bool write, ContextType ct,
bool se, FaultTypes ft, int asi)
{
uint64_t sfsr;
sfsr = tc->readMiscReg(reg);
if (sfsr & 0x1)
sfsr = 0x3;
else
sfsr = 1;
if (write)
sfsr |= 1 << 2;
sfsr |= ct << 4;
if (se)
sfsr |= 1 << 6;
sfsr |= ft << 7;
sfsr |= asi << 16;
tc->setMiscRegWithEffect(reg, sfsr);
}
void
TLB::writeTagAccess(ThreadContext *tc, int reg, Addr va, int context)
{
tc->setMiscRegWithEffect(reg, mbits(va, 63,13) | mbits(context,12,0));
}
void
ITB::writeSfsr(ThreadContext *tc, bool write, ContextType ct,
bool se, FaultTypes ft, int asi)
{
DPRINTF(TLB, "TLB: ITB Fault: w=%d ct=%d ft=%d asi=%d\n",
(int)write, ct, ft, asi);
TLB::writeSfsr(tc, MISCREG_MMU_ITLB_SFSR, write, ct, se, ft, asi);
}
void
ITB::writeTagAccess(ThreadContext *tc, Addr va, int context)
{
TLB::writeTagAccess(tc, MISCREG_MMU_ITLB_TAG_ACCESS, va, context);
}
void
DTB::writeSfr(ThreadContext *tc, Addr a, bool write, ContextType ct,
bool se, FaultTypes ft, int asi)
{
DPRINTF(TLB, "TLB: DTB Fault: A=%#x w=%d ct=%d ft=%d asi=%d\n",
a, (int)write, ct, ft, asi);
TLB::writeSfsr(tc, MISCREG_MMU_DTLB_SFSR, write, ct, se, ft, asi);
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_SFAR, a);
}
void
DTB::writeTagAccess(ThreadContext *tc, Addr va, int context)
{
TLB::writeTagAccess(tc, MISCREG_MMU_DTLB_TAG_ACCESS, va, context);
}
Fault
ITB::translate(RequestPtr &req, ThreadContext *tc)
{
uint64_t tlbdata = tc->readMiscReg(MISCREG_TLB_DATA);
Addr vaddr = req->getVaddr();
TlbEntry *e;
assert(req->getAsi() == ASI_IMPLICIT);
DPRINTF(TLB, "TLB: ITB Request to translate va=%#x size=%d\n",
vaddr, req->getSize());
// Be fast if we can!
if (cacheValid && cacheState == tlbdata) {
if (cacheEntry) {
if (cacheEntry->range.va < vaddr + sizeof(MachInst) &&
cacheEntry->range.va + cacheEntry->range.size >= vaddr) {
req->setPaddr(cacheEntry->pte.paddr() & ~(cacheEntry->pte.size()-1) |
vaddr & cacheEntry->pte.size()-1 );
return NoFault;
}
} else {
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
}
bool hpriv = bits(tlbdata,0,0);
bool red = bits(tlbdata,1,1);
bool priv = bits(tlbdata,2,2);
bool addr_mask = bits(tlbdata,3,3);
bool lsu_im = bits(tlbdata,4,4);
int part_id = bits(tlbdata,15,8);
int tl = bits(tlbdata,18,16);
int pri_context = bits(tlbdata,47,32);
int context;
ContextType ct;
int asi;
bool real = false;
DPRINTF(TLB, "TLB: priv:%d hpriv:%d red:%d lsuim:%d part_id: %#X\n",
priv, hpriv, red, lsu_im, part_id);
if (tl > 0) {
asi = ASI_N;
ct = Nucleus;
context = 0;
} else {
asi = ASI_P;
ct = Primary;
context = pri_context;
}
if ( hpriv || red ) {
cacheValid = true;
cacheState = tlbdata;
cacheEntry = NULL;
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
// If the access is unaligned trap
if (vaddr & 0x3) {
writeSfsr(tc, false, ct, false, OtherFault, asi);
return new MemAddressNotAligned;
}
if (addr_mask)
vaddr = vaddr & VAddrAMask;
if (!validVirtualAddress(vaddr, addr_mask)) {
writeSfsr(tc, false, ct, false, VaOutOfRange, asi);
return new InstructionAccessException;
}
if (!lsu_im) {
e = lookup(vaddr, part_id, true);
real = true;
context = 0;
} else {
e = lookup(vaddr, part_id, false, context);
}
if (e == NULL || !e->valid) {
tc->setMiscReg(MISCREG_MMU_ITLB_TAG_ACCESS,
vaddr & ~BytesInPageMask | context);
if (real)
return new InstructionRealTranslationMiss;
else
return new FastInstructionAccessMMUMiss;
}
// were not priviledged accesing priv page
if (!priv && e->pte.priv()) {
writeSfsr(tc, false, ct, false, PrivViolation, asi);
return new InstructionAccessException;
}
// cache translation date for next translation
cacheValid = true;
cacheState = tlbdata;
cacheEntry = e;
req->setPaddr(e->pte.paddr() & ~(e->pte.size()-1) |
vaddr & e->pte.size()-1 );
DPRINTF(TLB, "TLB: %#X -> %#X\n", vaddr, req->getPaddr());
return NoFault;
}
Fault
DTB::translate(RequestPtr &req, ThreadContext *tc, bool write)
{
/* @todo this could really use some profiling and fixing to make it faster! */
uint64_t tlbdata = tc->readMiscReg(MISCREG_TLB_DATA);
Addr vaddr = req->getVaddr();
Addr size = req->getSize();
ASI asi;
asi = (ASI)req->getAsi();
bool implicit = false;
bool hpriv = bits(tlbdata,0,0);
DPRINTF(TLB, "TLB: DTB Request to translate va=%#x size=%d asi=%#x\n",
vaddr, size, asi);
if (asi == ASI_IMPLICIT)
implicit = true;
if (hpriv && implicit) {
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
// Be fast if we can!
if (cacheValid && cacheState == tlbdata) {
if (cacheEntry[0] && cacheAsi[0] == asi && cacheEntry[0]->range.va < vaddr + size &&
cacheEntry[0]->range.va + cacheEntry[0]->range.size > vaddr) {
req->setPaddr(cacheEntry[0]->pte.paddr() & ~(cacheEntry[0]->pte.size()-1) |
vaddr & cacheEntry[0]->pte.size()-1 );
return NoFault;
}
if (cacheEntry[1] && cacheAsi[1] == asi && cacheEntry[1]->range.va < vaddr + size &&
cacheEntry[1]->range.va + cacheEntry[1]->range.size > vaddr) {
req->setPaddr(cacheEntry[1]->pte.paddr() & ~(cacheEntry[1]->pte.size()-1) |
vaddr & cacheEntry[1]->pte.size()-1 );
return NoFault;
}
}
bool red = bits(tlbdata,1,1);
bool priv = bits(tlbdata,2,2);
bool addr_mask = bits(tlbdata,3,3);
bool lsu_dm = bits(tlbdata,5,5);
int part_id = bits(tlbdata,15,8);
int tl = bits(tlbdata,18,16);
int pri_context = bits(tlbdata,47,32);
int sec_context = bits(tlbdata,47,32);
bool real = false;
ContextType ct = Primary;
int context = 0;
TlbEntry *e;
DPRINTF(TLB, "TLB: priv:%d hpriv:%d red:%d lsudm:%d part_id: %#X\n",
priv, hpriv, red, lsu_dm, part_id);
if (implicit) {
if (tl > 0) {
asi = ASI_N;
ct = Nucleus;
context = 0;
} else {
asi = ASI_P;
ct = Primary;
context = pri_context;
}
} else if (!hpriv && !red) {
if (tl > 0 || AsiIsNucleus(asi)) {
ct = Nucleus;
context = 0;
} else if (AsiIsSecondary(asi)) {
ct = Secondary;
context = sec_context;
} else {
context = pri_context;
ct = Primary; //???
}
// We need to check for priv level/asi priv
if (!priv && !AsiIsUnPriv(asi)) {
// It appears that context should be Nucleus in these cases?
writeSfr(tc, vaddr, write, Nucleus, false, IllegalAsi, asi);
return new PrivilegedAction;
}
if (priv && AsiIsHPriv(asi)) {
writeSfr(tc, vaddr, write, Nucleus, false, IllegalAsi, asi);
return new DataAccessException;
}
} else if (hpriv) {
if (asi == ASI_P) {
ct = Primary;
context = pri_context;
goto continueDtbFlow;
}
}
if (!implicit) {
if (AsiIsLittle(asi))
panic("Little Endian ASIs not supported\n");
if (AsiIsBlock(asi))
panic("Block ASIs not supported\n");
if (AsiIsNoFault(asi))
panic("No Fault ASIs not supported\n");
if (write && asi == ASI_LDTX_P)
// block init store (like write hint64)
goto continueDtbFlow;
if (!write && asi == ASI_QUAD_LDD)
goto continueDtbFlow;
if (AsiIsTwin(asi))
panic("Twin ASIs not supported\n");
if (AsiIsPartialStore(asi))
panic("Partial Store ASIs not supported\n");
if (AsiIsInterrupt(asi))
panic("Interrupt ASIs not supported\n");
if (AsiIsMmu(asi))
goto handleMmuRegAccess;
if (AsiIsScratchPad(asi))
goto handleScratchRegAccess;
if (AsiIsQueue(asi))
goto handleQueueRegAccess;
if (AsiIsSparcError(asi))
goto handleSparcErrorRegAccess;
if (!AsiIsReal(asi) && !AsiIsNucleus(asi))
panic("Accessing ASI %#X. Should we?\n", asi);
}
continueDtbFlow:
// If the asi is unaligned trap
if (vaddr & size-1) {
writeSfr(tc, vaddr, false, ct, false, OtherFault, asi);
return new MemAddressNotAligned;
}
if (addr_mask)
vaddr = vaddr & VAddrAMask;
if (!validVirtualAddress(vaddr, addr_mask)) {
writeSfr(tc, vaddr, false, ct, true, VaOutOfRange, asi);
return new DataAccessException;
}
if ((!lsu_dm && !hpriv) || AsiIsReal(asi)) {
real = true;
context = 0;
};
if (hpriv && (implicit || (!AsiIsAsIfUser(asi) && !AsiIsReal(asi)))) {
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
e = lookup(vaddr, part_id, real, context);
if (e == NULL || !e->valid) {
tc->setMiscReg(MISCREG_MMU_DTLB_TAG_ACCESS,
vaddr & ~BytesInPageMask | context);
DPRINTF(TLB, "TLB: DTB Failed to find matching TLB entry\n");
if (real)
return new DataRealTranslationMiss;
else
return new FastDataAccessMMUMiss;
}
if (write && !e->pte.writable()) {
writeSfr(tc, vaddr, write, ct, e->pte.sideffect(), OtherFault, asi);
return new FastDataAccessProtection;
}
if (e->pte.nofault() && !AsiIsNoFault(asi)) {
writeSfr(tc, vaddr, write, ct, e->pte.sideffect(), LoadFromNfo, asi);
return new DataAccessException;
}
if (e->pte.sideffect())
req->setFlags(req->getFlags() | UNCACHEABLE);
if (!priv && e->pte.priv()) {
writeSfr(tc, vaddr, write, ct, e->pte.sideffect(), PrivViolation, asi);
return new DataAccessException;
}
// cache translation date for next translation
cacheState = tlbdata;
if (!cacheValid) {
cacheEntry[1] = NULL;
cacheEntry[0] = NULL;
}
if (cacheEntry[0] != e && cacheEntry[1] != e) {
cacheEntry[1] = cacheEntry[0];
cacheEntry[0] = e;
cacheAsi[1] = cacheAsi[0];
cacheAsi[0] = asi;
if (implicit)
cacheAsi[0] = (ASI)0;
}
cacheValid = true;
req->setPaddr(e->pte.paddr() & ~(e->pte.size()-1) |
vaddr & e->pte.size()-1);
DPRINTF(TLB, "TLB: %#X -> %#X\n", vaddr, req->getPaddr());
return NoFault;
/** Normal flow ends here. */
handleScratchRegAccess:
if (vaddr > 0x38 || (vaddr >= 0x20 && vaddr < 0x30 && !hpriv)) {
writeSfr(tc, vaddr, write, Primary, true, IllegalAsi, asi);
return new DataAccessException;
}
goto regAccessOk;
handleQueueRegAccess:
if (!priv && !hpriv) {
writeSfr(tc, vaddr, write, Primary, true, IllegalAsi, asi);
return new PrivilegedAction;
}
if (!hpriv && vaddr & 0xF || vaddr > 0x3f8 || vaddr < 0x3c0) {
writeSfr(tc, vaddr, write, Primary, true, IllegalAsi, asi);
return new DataAccessException;
}
goto regAccessOk;
handleSparcErrorRegAccess:
if (!hpriv) {
if (priv) {
writeSfr(tc, vaddr, write, Primary, true, IllegalAsi, asi);
return new DataAccessException;
} else {
writeSfr(tc, vaddr, write, Primary, true, IllegalAsi, asi);
return new PrivilegedAction;
}
}
goto regAccessOk;
regAccessOk:
handleMmuRegAccess:
DPRINTF(TLB, "TLB: DTB Translating MM IPR access\n");
req->setMmapedIpr(true);
req->setPaddr(req->getVaddr());
return NoFault;
};
Tick
DTB::doMmuRegRead(ThreadContext *tc, Packet *pkt)
{
Addr va = pkt->getAddr();
ASI asi = (ASI)pkt->req->getAsi();
uint64_t temp, data;
uint64_t tsbtemp, cnftemp;
DPRINTF(IPR, "Memory Mapped IPR Read: asi=%#X a=%#x\n",
(uint32_t)pkt->req->getAsi(), pkt->getAddr());
switch (asi) {
case ASI_LSU_CONTROL_REG:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_LSU_CTRL));
break;
case ASI_MMU:
switch (va) {
case 0x8:
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_P_CONTEXT));
break;
case 0x10:
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_S_CONTEXT));
break;
default:
goto doMmuReadError;
}
break;
case ASI_QUEUE:
pkt->set(tc->readMiscRegWithEffect(MISCREG_QUEUE_CPU_MONDO_HEAD +
(va >> 4) - 0x3c));
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_C0_TSB_PS0));
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_C0_TSB_PS1));
break;
case ASI_DMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_C0_CONFIG));
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_C0_TSB_PS0));
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_C0_TSB_PS1));
break;
case ASI_IMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_C0_CONFIG));
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_CX_TSB_PS0));
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_CX_TSB_PS1));
break;
case ASI_DMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_CX_CONFIG));
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_CX_TSB_PS0));
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_CX_TSB_PS1));
break;
case ASI_IMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_CX_CONFIG));
break;
case ASI_SPARC_ERROR_STATUS_REG:
warn("returning 0 for SPARC ERROR regsiter read\n");
pkt->set(0);
break;
case ASI_HYP_SCRATCHPAD:
case ASI_SCRATCHPAD:
pkt->set(tc->readMiscRegWithEffect(MISCREG_SCRATCHPAD_R0 + (va >> 3)));
break;
case ASI_IMMU:
switch (va) {
case 0x0:
temp = tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_TAG_ACCESS);
pkt->set(bits(temp,63,22) | bits(temp,12,0) << 48);
break;
case 0x30:
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_TAG_ACCESS));
break;
default:
goto doMmuReadError;
}
break;
case ASI_DMMU:
switch (va) {
case 0x0:
temp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_TAG_ACCESS);
pkt->set(bits(temp,63,22) | bits(temp,12,0) << 48);
break;
case 0x30:
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_TAG_ACCESS));
break;
case 0x80:
pkt->set(tc->readMiscRegWithEffect(MISCREG_MMU_PART_ID));
break;
default:
goto doMmuReadError;
}
break;
case ASI_DMMU_TSB_PS0_PTR_REG:
temp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_TAG_ACCESS);
if (bits(temp,12,0) == 0) {
tsbtemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_C0_TSB_PS0);
cnftemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_C0_CONFIG);
} else {
tsbtemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_CX_TSB_PS0);
cnftemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_CX_CONFIG);
}
data = mbits(tsbtemp,63,13);
data |= temp >> (9 + bits(cnftemp,2,0) * 3) &
mbits((uint64_t)-1ll,12+bits(tsbtemp,3,0), 4);
pkt->set(data);
break;
case ASI_DMMU_TSB_PS1_PTR_REG:
temp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_TAG_ACCESS);
if (bits(temp,12,0) == 0) {
tsbtemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_C0_TSB_PS1);
cnftemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_C0_CONFIG);
} else {
tsbtemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_CX_TSB_PS1);
cnftemp = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_CX_CONFIG);
}
data = mbits(tsbtemp,63,13);
if (bits(tsbtemp,12,12))
data |= ULL(1) << (13+bits(tsbtemp,3,0));
data |= temp >> (9 + bits(cnftemp,2,0) * 3) &
mbits((uint64_t)-1ll,12+bits(tsbtemp,3,0), 4);
pkt->set(data);
break;
default:
doMmuReadError:
panic("need to impl DTB::doMmuRegRead() got asi=%#x, va=%#x\n",
(uint32_t)asi, va);
}
pkt->result = Packet::Success;
return tc->getCpuPtr()->cycles(1);
}
Tick
DTB::doMmuRegWrite(ThreadContext *tc, Packet *pkt)
{
uint64_t data = gtoh(pkt->get<uint64_t>());
Addr va = pkt->getAddr();
ASI asi = (ASI)pkt->req->getAsi();
Addr ta_insert;
Addr va_insert;
Addr ct_insert;
int part_insert;
int entry_insert = -1;
bool real_insert;
bool ignore;
int part_id;
int ctx_id;
PageTableEntry pte;
DPRINTF(IPR, "Memory Mapped IPR Write: asi=%#X a=%#x d=%#X\n",
(uint32_t)asi, va, data);
switch (asi) {
case ASI_LSU_CONTROL_REG:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_LSU_CTRL, data);
break;
case ASI_MMU:
switch (va) {
case 0x8:
tc->setMiscRegWithEffect(MISCREG_MMU_P_CONTEXT, data);
break;
case 0x10:
tc->setMiscRegWithEffect(MISCREG_MMU_S_CONTEXT, data);
break;
default:
goto doMmuWriteError;
}
break;
case ASI_QUEUE:
assert(mbits(data,13,6) == data);
tc->setMiscRegWithEffect(MISCREG_QUEUE_CPU_MONDO_HEAD +
(va >> 4) - 0x3c, data);
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_C0_TSB_PS0, data);
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_C0_TSB_PS1, data);
break;
case ASI_DMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_C0_CONFIG, data);
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_ITLB_C0_TSB_PS0, data);
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_ITLB_C0_TSB_PS1, data);
break;
case ASI_IMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_ITLB_C0_CONFIG, data);
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_CX_TSB_PS0, data);
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_CX_TSB_PS1, data);
break;
case ASI_DMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_CX_CONFIG, data);
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_ITLB_CX_TSB_PS0, data);
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_ITLB_CX_TSB_PS1, data);
break;
case ASI_IMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
tc->setMiscRegWithEffect(MISCREG_MMU_ITLB_CX_CONFIG, data);
break;
case ASI_SPARC_ERROR_EN_REG:
case ASI_SPARC_ERROR_STATUS_REG:
warn("Ignoring write to SPARC ERROR regsiter\n");
break;
case ASI_HYP_SCRATCHPAD:
case ASI_SCRATCHPAD:
tc->setMiscRegWithEffect(MISCREG_SCRATCHPAD_R0 + (va >> 3), data);
break;
case ASI_IMMU:
switch (va) {
case 0x30:
tc->setMiscRegWithEffect(MISCREG_MMU_ITLB_TAG_ACCESS, data);
break;
default:
goto doMmuWriteError;
}
break;
case ASI_ITLB_DATA_ACCESS_REG:
entry_insert = bits(va, 8,3);
case ASI_ITLB_DATA_IN_REG:
assert(entry_insert != -1 || mbits(va,10,9) == va);
ta_insert = tc->readMiscRegWithEffect(MISCREG_MMU_ITLB_TAG_ACCESS);
va_insert = mbits(ta_insert, 63,13);
ct_insert = mbits(ta_insert, 12,0);
part_insert = tc->readMiscRegWithEffect(MISCREG_MMU_PART_ID);
real_insert = bits(va, 9,9);
pte.populate(data, bits(va,10,10) ? PageTableEntry::sun4v :
PageTableEntry::sun4u);
tc->getITBPtr()->insert(va_insert, part_insert, ct_insert, real_insert,
pte, entry_insert);
break;
case ASI_DTLB_DATA_ACCESS_REG:
entry_insert = bits(va, 8,3);
case ASI_DTLB_DATA_IN_REG:
assert(entry_insert != -1 || mbits(va,10,9) == va);
ta_insert = tc->readMiscRegWithEffect(MISCREG_MMU_DTLB_TAG_ACCESS);
va_insert = mbits(ta_insert, 63,13);
ct_insert = mbits(ta_insert, 12,0);
part_insert = tc->readMiscRegWithEffect(MISCREG_MMU_PART_ID);
real_insert = bits(va, 9,9);
pte.populate(data, bits(va,10,10) ? PageTableEntry::sun4v :
PageTableEntry::sun4u);
insert(va_insert, part_insert, ct_insert, real_insert, pte, entry_insert);
break;
case ASI_IMMU_DEMAP:
ignore = false;
ctx_id = -1;
part_id = tc->readMiscRegWithEffect(MISCREG_MMU_PART_ID);
switch (bits(va,5,4)) {
case 0:
ctx_id = tc->readMiscRegWithEffect(MISCREG_MMU_P_CONTEXT);
break;
case 1:
ignore = true;
break;
case 3:
ctx_id = 0;
break;
default:
ignore = true;
}
switch(bits(va,7,6)) {
case 0: // demap page
if (!ignore)
tc->getITBPtr()->demapPage(mbits(va,63,13), part_id,
bits(va,9,9), ctx_id);
break;
case 1: //demap context
if (!ignore)
tc->getITBPtr()->demapContext(part_id, ctx_id);
break;
case 2:
tc->getITBPtr()->demapAll(part_id);
break;
default:
panic("Invalid type for IMMU demap\n");
}
break;
case ASI_DMMU:
switch (va) {
case 0x30:
tc->setMiscRegWithEffect(MISCREG_MMU_DTLB_TAG_ACCESS, data);
break;
case 0x80:
tc->setMiscRegWithEffect(MISCREG_MMU_PART_ID, data);
break;
default:
goto doMmuWriteError;
}
break;
case ASI_DMMU_DEMAP:
ignore = false;
ctx_id = -1;
part_id = tc->readMiscRegWithEffect(MISCREG_MMU_PART_ID);
switch (bits(va,5,4)) {
case 0:
ctx_id = tc->readMiscRegWithEffect(MISCREG_MMU_P_CONTEXT);
break;
case 1:
ctx_id = tc->readMiscRegWithEffect(MISCREG_MMU_S_CONTEXT);
break;
case 3:
ctx_id = 0;
break;
default:
ignore = true;
}
switch(bits(va,7,6)) {
case 0: // demap page
if (!ignore)
demapPage(mbits(va,63,13), part_id, bits(va,9,9), ctx_id);
break;
case 1: //demap context
if (!ignore)
demapContext(part_id, ctx_id);
break;
case 2:
demapAll(part_id);
break;
default:
panic("Invalid type for IMMU demap\n");
}
break;
default:
doMmuWriteError:
panic("need to impl DTB::doMmuRegWrite() got asi=%#x, va=%#x d=%#x\n",
(uint32_t)pkt->req->getAsi(), pkt->getAddr(), data);
}
pkt->result = Packet::Success;
return tc->getCpuPtr()->cycles(1);
}
void
TLB::serialize(std::ostream &os)
{
panic("Need to implement serialize tlb for SPARC\n");
}
void
TLB::unserialize(Checkpoint *cp, const std::string &section)
{
panic("Need to implement unserialize tlb for SPARC\n");
}
DEFINE_SIM_OBJECT_CLASS_NAME("SparcTLB", TLB)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(ITB)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(ITB)
BEGIN_INIT_SIM_OBJECT_PARAMS(ITB)
INIT_PARAM_DFLT(size, "TLB size", 48)
END_INIT_SIM_OBJECT_PARAMS(ITB)
CREATE_SIM_OBJECT(ITB)
{
return new ITB(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("SparcITB", ITB)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(DTB)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(DTB)
BEGIN_INIT_SIM_OBJECT_PARAMS(DTB)
INIT_PARAM_DFLT(size, "TLB size", 64)
END_INIT_SIM_OBJECT_PARAMS(DTB)
CREATE_SIM_OBJECT(DTB)
{
return new DTB(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("SparcDTB", DTB)
}