d857faf073
the primary identifier for a hardware context should be contextId(). The concept of threads within a CPU remains, in the form of threadId() because sometimes you need to know which context within a cpu to manipulate.
866 lines
22 KiB
C++
866 lines
22 KiB
C++
/*
|
|
* Copyright (c) 2002-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Authors: Steve Reinhardt
|
|
*/
|
|
|
|
#include "arch/locked_mem.hh"
|
|
#include "arch/mmaped_ipr.hh"
|
|
#include "arch/utility.hh"
|
|
#include "base/bigint.hh"
|
|
#include "cpu/exetrace.hh"
|
|
#include "cpu/simple/timing.hh"
|
|
#include "mem/packet.hh"
|
|
#include "mem/packet_access.hh"
|
|
#include "params/TimingSimpleCPU.hh"
|
|
#include "sim/system.hh"
|
|
|
|
using namespace std;
|
|
using namespace TheISA;
|
|
|
|
Port *
|
|
TimingSimpleCPU::getPort(const std::string &if_name, int idx)
|
|
{
|
|
if (if_name == "dcache_port")
|
|
return &dcachePort;
|
|
else if (if_name == "icache_port")
|
|
return &icachePort;
|
|
else
|
|
panic("No Such Port\n");
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::init()
|
|
{
|
|
BaseCPU::init();
|
|
#if FULL_SYSTEM
|
|
for (int i = 0; i < threadContexts.size(); ++i) {
|
|
ThreadContext *tc = threadContexts[i];
|
|
|
|
// initialize CPU, including PC
|
|
TheISA::initCPU(tc, _cpuId);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
Tick
|
|
TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
|
|
{
|
|
panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
|
|
return curTick;
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
|
|
{
|
|
//No internal storage to update, jusst return
|
|
return;
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
|
|
{
|
|
if (status == RangeChange) {
|
|
if (!snoopRangeSent) {
|
|
snoopRangeSent = true;
|
|
sendStatusChange(Port::RangeChange);
|
|
}
|
|
return;
|
|
}
|
|
|
|
panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
|
|
{
|
|
pkt = _pkt;
|
|
cpu->schedule(this, t);
|
|
}
|
|
|
|
TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
|
|
: BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this)
|
|
{
|
|
_status = Idle;
|
|
|
|
icachePort.snoopRangeSent = false;
|
|
dcachePort.snoopRangeSent = false;
|
|
|
|
ifetch_pkt = dcache_pkt = NULL;
|
|
drainEvent = NULL;
|
|
previousTick = 0;
|
|
changeState(SimObject::Running);
|
|
}
|
|
|
|
|
|
TimingSimpleCPU::~TimingSimpleCPU()
|
|
{
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::serialize(ostream &os)
|
|
{
|
|
SimObject::State so_state = SimObject::getState();
|
|
SERIALIZE_ENUM(so_state);
|
|
BaseSimpleCPU::serialize(os);
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::unserialize(Checkpoint *cp, const string §ion)
|
|
{
|
|
SimObject::State so_state;
|
|
UNSERIALIZE_ENUM(so_state);
|
|
BaseSimpleCPU::unserialize(cp, section);
|
|
}
|
|
|
|
unsigned int
|
|
TimingSimpleCPU::drain(Event *drain_event)
|
|
{
|
|
// TimingSimpleCPU is ready to drain if it's not waiting for
|
|
// an access to complete.
|
|
if (_status == Idle || _status == Running || _status == SwitchedOut) {
|
|
changeState(SimObject::Drained);
|
|
return 0;
|
|
} else {
|
|
changeState(SimObject::Draining);
|
|
drainEvent = drain_event;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::resume()
|
|
{
|
|
DPRINTF(SimpleCPU, "Resume\n");
|
|
if (_status != SwitchedOut && _status != Idle) {
|
|
assert(system->getMemoryMode() == Enums::timing);
|
|
|
|
if (fetchEvent.scheduled())
|
|
deschedule(fetchEvent);
|
|
|
|
schedule(fetchEvent, nextCycle());
|
|
}
|
|
|
|
changeState(SimObject::Running);
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::switchOut()
|
|
{
|
|
assert(_status == Running || _status == Idle);
|
|
_status = SwitchedOut;
|
|
numCycles += tickToCycles(curTick - previousTick);
|
|
|
|
// If we've been scheduled to resume but are then told to switch out,
|
|
// we'll need to cancel it.
|
|
if (fetchEvent.scheduled())
|
|
deschedule(fetchEvent);
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
|
|
{
|
|
BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
|
|
|
|
// if any of this CPU's ThreadContexts are active, mark the CPU as
|
|
// running and schedule its tick event.
|
|
for (int i = 0; i < threadContexts.size(); ++i) {
|
|
ThreadContext *tc = threadContexts[i];
|
|
if (tc->status() == ThreadContext::Active && _status != Running) {
|
|
_status = Running;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (_status != Running) {
|
|
_status = Idle;
|
|
}
|
|
assert(threadContexts.size() == 1);
|
|
previousTick = curTick;
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::activateContext(int thread_num, int delay)
|
|
{
|
|
DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
|
|
|
|
assert(thread_num == 0);
|
|
assert(thread);
|
|
|
|
assert(_status == Idle);
|
|
|
|
notIdleFraction++;
|
|
_status = Running;
|
|
|
|
// kick things off by initiating the fetch of the next instruction
|
|
schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::suspendContext(int thread_num)
|
|
{
|
|
DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
|
|
|
|
assert(thread_num == 0);
|
|
assert(thread);
|
|
|
|
assert(_status == Running);
|
|
|
|
// just change status to Idle... if status != Running,
|
|
// completeInst() will not initiate fetch of next instruction.
|
|
|
|
notIdleFraction--;
|
|
_status = Idle;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
|
|
{
|
|
Request *req =
|
|
new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
|
|
_cpuId, /* thread ID */ 0);
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(req->getVaddr());
|
|
}
|
|
|
|
// translate to physical address
|
|
Fault fault = thread->translateDataReadReq(req);
|
|
|
|
// Now do the access.
|
|
if (fault == NoFault) {
|
|
PacketPtr pkt =
|
|
new Packet(req,
|
|
(req->isLocked() ?
|
|
MemCmd::LoadLockedReq : MemCmd::ReadReq),
|
|
Packet::Broadcast);
|
|
pkt->dataDynamic<T>(new T);
|
|
|
|
if (req->isMmapedIpr()) {
|
|
Tick delay;
|
|
delay = TheISA::handleIprRead(thread->getTC(), pkt);
|
|
new IprEvent(pkt, this, nextCycle(curTick + delay));
|
|
_status = DcacheWaitResponse;
|
|
dcache_pkt = NULL;
|
|
} else if (!dcachePort.sendTiming(pkt)) {
|
|
_status = DcacheRetry;
|
|
dcache_pkt = pkt;
|
|
} else {
|
|
_status = DcacheWaitResponse;
|
|
// memory system takes ownership of packet
|
|
dcache_pkt = NULL;
|
|
}
|
|
|
|
// This will need a new way to tell if it has a dcache attached.
|
|
if (req->isUncacheable())
|
|
recordEvent("Uncached Read");
|
|
} else {
|
|
delete req;
|
|
}
|
|
|
|
if (traceData) {
|
|
traceData->setData(data);
|
|
}
|
|
return fault;
|
|
}
|
|
|
|
Fault
|
|
TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
|
|
int size, unsigned flags)
|
|
{
|
|
Request *req =
|
|
new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(vaddr);
|
|
}
|
|
|
|
Fault fault = thread->translateDataWriteReq(req);
|
|
|
|
if (fault == NoFault)
|
|
paddr = req->getPaddr();
|
|
|
|
delete req;
|
|
return fault;
|
|
}
|
|
|
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
|
|
|
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template<>
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
|
|
{
|
|
return read(addr, *(uint64_t*)&data, flags);
|
|
}
|
|
|
|
template<>
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
|
|
{
|
|
return read(addr, *(uint32_t*)&data, flags);
|
|
}
|
|
|
|
|
|
template<>
|
|
Fault
|
|
TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
|
|
{
|
|
return read(addr, (uint32_t&)data, flags);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Fault
|
|
TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
Request *req =
|
|
new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
|
|
_cpuId, /* thread ID */ 0);
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(req->getVaddr());
|
|
}
|
|
|
|
// translate to physical address
|
|
Fault fault = thread->translateDataWriteReq(req);
|
|
|
|
// Now do the access.
|
|
if (fault == NoFault) {
|
|
MemCmd cmd = MemCmd::WriteReq; // default
|
|
bool do_access = true; // flag to suppress cache access
|
|
|
|
if (req->isLocked()) {
|
|
cmd = MemCmd::StoreCondReq;
|
|
do_access = TheISA::handleLockedWrite(thread, req);
|
|
} else if (req->isSwap()) {
|
|
cmd = MemCmd::SwapReq;
|
|
if (req->isCondSwap()) {
|
|
assert(res);
|
|
req->setExtraData(*res);
|
|
}
|
|
}
|
|
|
|
// Note: need to allocate dcache_pkt even if do_access is
|
|
// false, as it's used unconditionally to call completeAcc().
|
|
assert(dcache_pkt == NULL);
|
|
dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
|
|
dcache_pkt->allocate();
|
|
dcache_pkt->set(data);
|
|
|
|
if (do_access) {
|
|
if (req->isMmapedIpr()) {
|
|
Tick delay;
|
|
dcache_pkt->set(htog(data));
|
|
delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
|
|
new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
|
|
_status = DcacheWaitResponse;
|
|
dcache_pkt = NULL;
|
|
} else if (!dcachePort.sendTiming(dcache_pkt)) {
|
|
_status = DcacheRetry;
|
|
} else {
|
|
_status = DcacheWaitResponse;
|
|
// memory system takes ownership of packet
|
|
dcache_pkt = NULL;
|
|
}
|
|
}
|
|
// This will need a new way to tell if it's hooked up to a cache or not.
|
|
if (req->isUncacheable())
|
|
recordEvent("Uncached Write");
|
|
} else {
|
|
delete req;
|
|
}
|
|
|
|
if (traceData) {
|
|
traceData->setData(data);
|
|
}
|
|
|
|
// If the write needs to have a fault on the access, consider calling
|
|
// changeStatus() and changing it to "bad addr write" or something.
|
|
return fault;
|
|
}
|
|
|
|
Fault
|
|
TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
|
|
int size, unsigned flags)
|
|
{
|
|
Request *req =
|
|
new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(vaddr);
|
|
}
|
|
|
|
Fault fault = thread->translateDataWriteReq(req);
|
|
|
|
if (fault == NoFault)
|
|
paddr = req->getPaddr();
|
|
|
|
delete req;
|
|
return fault;
|
|
}
|
|
|
|
|
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::write(Twin32_t data, Addr addr,
|
|
unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::write(Twin64_t data, Addr addr,
|
|
unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::write(uint64_t data, Addr addr,
|
|
unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::write(uint32_t data, Addr addr,
|
|
unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::write(uint16_t data, Addr addr,
|
|
unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
TimingSimpleCPU::write(uint8_t data, Addr addr,
|
|
unsigned flags, uint64_t *res);
|
|
|
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template<>
|
|
Fault
|
|
TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write(*(uint64_t*)&data, addr, flags, res);
|
|
}
|
|
|
|
template<>
|
|
Fault
|
|
TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write(*(uint32_t*)&data, addr, flags, res);
|
|
}
|
|
|
|
|
|
template<>
|
|
Fault
|
|
TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write((uint32_t)data, addr, flags, res);
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::fetch()
|
|
{
|
|
DPRINTF(SimpleCPU, "Fetch\n");
|
|
|
|
if (!curStaticInst || !curStaticInst->isDelayedCommit())
|
|
checkForInterrupts();
|
|
|
|
checkPcEventQueue();
|
|
|
|
bool fromRom = isRomMicroPC(thread->readMicroPC());
|
|
|
|
if (!fromRom) {
|
|
Request *ifetch_req = new Request();
|
|
ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
|
|
Fault fault = setupFetchRequest(ifetch_req);
|
|
|
|
ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
|
|
ifetch_pkt->dataStatic(&inst);
|
|
|
|
if (fault == NoFault) {
|
|
if (!icachePort.sendTiming(ifetch_pkt)) {
|
|
// Need to wait for retry
|
|
_status = IcacheRetry;
|
|
} else {
|
|
// Need to wait for cache to respond
|
|
_status = IcacheWaitResponse;
|
|
// ownership of packet transferred to memory system
|
|
ifetch_pkt = NULL;
|
|
}
|
|
} else {
|
|
delete ifetch_req;
|
|
delete ifetch_pkt;
|
|
// fetch fault: advance directly to next instruction (fault handler)
|
|
advanceInst(fault);
|
|
}
|
|
} else {
|
|
_status = IcacheWaitResponse;
|
|
completeIfetch(NULL);
|
|
}
|
|
|
|
numCycles += tickToCycles(curTick - previousTick);
|
|
previousTick = curTick;
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::advanceInst(Fault fault)
|
|
{
|
|
advancePC(fault);
|
|
|
|
if (_status == Running) {
|
|
// kick off fetch of next instruction... callback from icache
|
|
// response will cause that instruction to be executed,
|
|
// keeping the CPU running.
|
|
fetch();
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::completeIfetch(PacketPtr pkt)
|
|
{
|
|
DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
|
|
|
|
// received a response from the icache: execute the received
|
|
// instruction
|
|
|
|
assert(!pkt || !pkt->isError());
|
|
assert(_status == IcacheWaitResponse);
|
|
|
|
_status = Running;
|
|
|
|
numCycles += tickToCycles(curTick - previousTick);
|
|
previousTick = curTick;
|
|
|
|
if (getState() == SimObject::Draining) {
|
|
if (pkt) {
|
|
delete pkt->req;
|
|
delete pkt;
|
|
}
|
|
|
|
completeDrain();
|
|
return;
|
|
}
|
|
|
|
preExecute();
|
|
if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
|
|
// load or store: just send to dcache
|
|
Fault fault = curStaticInst->initiateAcc(this, traceData);
|
|
if (_status != Running) {
|
|
// instruction will complete in dcache response callback
|
|
assert(_status == DcacheWaitResponse || _status == DcacheRetry);
|
|
assert(fault == NoFault);
|
|
} else {
|
|
if (fault == NoFault) {
|
|
// Note that ARM can have NULL packets if the instruction gets
|
|
// squashed due to predication
|
|
// early fail on store conditional: complete now
|
|
assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
|
|
|
|
fault = curStaticInst->completeAcc(dcache_pkt, this,
|
|
traceData);
|
|
if (dcache_pkt != NULL)
|
|
{
|
|
delete dcache_pkt->req;
|
|
delete dcache_pkt;
|
|
dcache_pkt = NULL;
|
|
}
|
|
|
|
// keep an instruction count
|
|
if (fault == NoFault)
|
|
countInst();
|
|
} else if (traceData) {
|
|
// If there was a fault, we shouldn't trace this instruction.
|
|
delete traceData;
|
|
traceData = NULL;
|
|
}
|
|
|
|
postExecute();
|
|
// @todo remove me after debugging with legion done
|
|
if (curStaticInst && (!curStaticInst->isMicroop() ||
|
|
curStaticInst->isFirstMicroop()))
|
|
instCnt++;
|
|
advanceInst(fault);
|
|
}
|
|
} else {
|
|
// non-memory instruction: execute completely now
|
|
Fault fault = curStaticInst->execute(this, traceData);
|
|
|
|
// keep an instruction count
|
|
if (fault == NoFault)
|
|
countInst();
|
|
else if (traceData) {
|
|
// If there was a fault, we shouldn't trace this instruction.
|
|
delete traceData;
|
|
traceData = NULL;
|
|
}
|
|
|
|
postExecute();
|
|
// @todo remove me after debugging with legion done
|
|
if (curStaticInst && (!curStaticInst->isMicroop() ||
|
|
curStaticInst->isFirstMicroop()))
|
|
instCnt++;
|
|
advanceInst(fault);
|
|
}
|
|
|
|
if (pkt) {
|
|
delete pkt->req;
|
|
delete pkt;
|
|
}
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::IcachePort::ITickEvent::process()
|
|
{
|
|
cpu->completeIfetch(pkt);
|
|
}
|
|
|
|
bool
|
|
TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
|
|
{
|
|
if (pkt->isResponse() && !pkt->wasNacked()) {
|
|
// delay processing of returned data until next CPU clock edge
|
|
Tick next_tick = cpu->nextCycle(curTick);
|
|
|
|
if (next_tick == curTick)
|
|
cpu->completeIfetch(pkt);
|
|
else
|
|
tickEvent.schedule(pkt, next_tick);
|
|
|
|
return true;
|
|
}
|
|
else if (pkt->wasNacked()) {
|
|
assert(cpu->_status == IcacheWaitResponse);
|
|
pkt->reinitNacked();
|
|
if (!sendTiming(pkt)) {
|
|
cpu->_status = IcacheRetry;
|
|
cpu->ifetch_pkt = pkt;
|
|
}
|
|
}
|
|
//Snooping a Coherence Request, do nothing
|
|
return true;
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::IcachePort::recvRetry()
|
|
{
|
|
// we shouldn't get a retry unless we have a packet that we're
|
|
// waiting to transmit
|
|
assert(cpu->ifetch_pkt != NULL);
|
|
assert(cpu->_status == IcacheRetry);
|
|
PacketPtr tmp = cpu->ifetch_pkt;
|
|
if (sendTiming(tmp)) {
|
|
cpu->_status = IcacheWaitResponse;
|
|
cpu->ifetch_pkt = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
|
|
{
|
|
// received a response from the dcache: complete the load or store
|
|
// instruction
|
|
assert(!pkt->isError());
|
|
assert(_status == DcacheWaitResponse);
|
|
_status = Running;
|
|
|
|
numCycles += tickToCycles(curTick - previousTick);
|
|
previousTick = curTick;
|
|
|
|
Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
|
|
|
|
// keep an instruction count
|
|
if (fault == NoFault)
|
|
countInst();
|
|
else if (traceData) {
|
|
// If there was a fault, we shouldn't trace this instruction.
|
|
delete traceData;
|
|
traceData = NULL;
|
|
}
|
|
|
|
// the locked flag may be cleared on the response packet, so check
|
|
// pkt->req and not pkt to see if it was a load-locked
|
|
if (pkt->isRead() && pkt->req->isLocked()) {
|
|
TheISA::handleLockedRead(thread, pkt->req);
|
|
}
|
|
|
|
delete pkt->req;
|
|
delete pkt;
|
|
|
|
postExecute();
|
|
|
|
if (getState() == SimObject::Draining) {
|
|
advancePC(fault);
|
|
completeDrain();
|
|
|
|
return;
|
|
}
|
|
|
|
advanceInst(fault);
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::completeDrain()
|
|
{
|
|
DPRINTF(Config, "Done draining\n");
|
|
changeState(SimObject::Drained);
|
|
drainEvent->process();
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::DcachePort::setPeer(Port *port)
|
|
{
|
|
Port::setPeer(port);
|
|
|
|
#if FULL_SYSTEM
|
|
// Update the ThreadContext's memory ports (Functional/Virtual
|
|
// Ports)
|
|
cpu->tcBase()->connectMemPorts(cpu->tcBase());
|
|
#endif
|
|
}
|
|
|
|
bool
|
|
TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
|
|
{
|
|
if (pkt->isResponse() && !pkt->wasNacked()) {
|
|
// delay processing of returned data until next CPU clock edge
|
|
Tick next_tick = cpu->nextCycle(curTick);
|
|
|
|
if (next_tick == curTick)
|
|
cpu->completeDataAccess(pkt);
|
|
else
|
|
tickEvent.schedule(pkt, next_tick);
|
|
|
|
return true;
|
|
}
|
|
else if (pkt->wasNacked()) {
|
|
assert(cpu->_status == DcacheWaitResponse);
|
|
pkt->reinitNacked();
|
|
if (!sendTiming(pkt)) {
|
|
cpu->_status = DcacheRetry;
|
|
cpu->dcache_pkt = pkt;
|
|
}
|
|
}
|
|
//Snooping a Coherence Request, do nothing
|
|
return true;
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::DcachePort::DTickEvent::process()
|
|
{
|
|
cpu->completeDataAccess(pkt);
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::DcachePort::recvRetry()
|
|
{
|
|
// we shouldn't get a retry unless we have a packet that we're
|
|
// waiting to transmit
|
|
assert(cpu->dcache_pkt != NULL);
|
|
assert(cpu->_status == DcacheRetry);
|
|
PacketPtr tmp = cpu->dcache_pkt;
|
|
if (sendTiming(tmp)) {
|
|
cpu->_status = DcacheWaitResponse;
|
|
// memory system takes ownership of packet
|
|
cpu->dcache_pkt = NULL;
|
|
}
|
|
}
|
|
|
|
TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
|
|
Tick t)
|
|
: pkt(_pkt), cpu(_cpu)
|
|
{
|
|
cpu->schedule(this, t);
|
|
}
|
|
|
|
void
|
|
TimingSimpleCPU::IprEvent::process()
|
|
{
|
|
cpu->completeDataAccess(pkt);
|
|
}
|
|
|
|
const char *
|
|
TimingSimpleCPU::IprEvent::description() const
|
|
{
|
|
return "Timing Simple CPU Delay IPR event";
|
|
}
|
|
|
|
|
|
void
|
|
TimingSimpleCPU::printAddr(Addr a)
|
|
{
|
|
dcachePort.printAddr(a);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// TimingSimpleCPU Simulation Object
|
|
//
|
|
TimingSimpleCPU *
|
|
TimingSimpleCPUParams::create()
|
|
{
|
|
numThreads = 1;
|
|
#if !FULL_SYSTEM
|
|
if (workload.size() != 1)
|
|
panic("only one workload allowed");
|
|
#endif
|
|
return new TimingSimpleCPU(this);
|
|
}
|