gem5/configs/ruby/MOESI_hammer.py
Brad Beckmann 11b725c19d ruby: changes how Topologies are created
Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.

--HG--
rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py
rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py
rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py
rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py
rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
2012-07-10 22:51:53 -07:00

225 lines
8.7 KiB
Python

# Copyright (c) 2006-2007 The Regents of The University of Michigan
# Copyright (c) 2009 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Brad Beckmann
import math
import m5
from m5.objects import *
from m5.defines import buildEnv
from Ruby import create_topology
#
# Note: the L1 Cache latency is only used by the sequencer on fast path hits
#
class L1Cache(RubyCache):
latency = 2
#
# Note: the L2 Cache latency is not currently used
#
class L2Cache(RubyCache):
latency = 10
#
# Probe filter is a cache, latency is not used
#
class ProbeFilter(RubyCache):
latency = 1
def define_options(parser):
parser.add_option("--allow-atomic-migration", action="store_true",
help="allow migratory sharing for atomic only accessed blocks")
parser.add_option("--pf-on", action="store_true",
help="Hammer: enable Probe Filter")
parser.add_option("--dir-on", action="store_true",
help="Hammer: enable Full-bit Directory")
def create_system(options, system, piobus, dma_ports, ruby_system):
if buildEnv['PROTOCOL'] != 'MOESI_hammer':
panic("This script requires the MOESI_hammer protocol to be built.")
cpu_sequencers = []
#
# The ruby network creation expects the list of nodes in the system to be
# consistent with the NetDest list. Therefore the l1 controller nodes must be
# listed before the directory nodes and directory nodes before dma nodes, etc.
#
l1_cntrl_nodes = []
dir_cntrl_nodes = []
dma_cntrl_nodes = []
#
# Must create the individual controllers before the network to ensure the
# controller constructors are called before the network constructor
#
block_size_bits = int(math.log(options.cacheline_size, 2))
cntrl_count = 0
for i in xrange(options.num_cpus):
#
# First create the Ruby objects associated with this cpu
#
l1i_cache = L1Cache(size = options.l1i_size,
assoc = options.l1i_assoc,
start_index_bit = block_size_bits,
is_icache = True)
l1d_cache = L1Cache(size = options.l1d_size,
assoc = options.l1d_assoc,
start_index_bit = block_size_bits)
l2_cache = L2Cache(size = options.l2_size,
assoc = options.l2_assoc,
start_index_bit = block_size_bits)
l1_cntrl = L1Cache_Controller(version = i,
cntrl_id = cntrl_count,
L1IcacheMemory = l1i_cache,
L1DcacheMemory = l1d_cache,
L2cacheMemory = l2_cache,
no_mig_atomic = not \
options.allow_atomic_migration,
send_evictions = (
options.cpu_type == "detailed"),
ruby_system = ruby_system)
cpu_seq = RubySequencer(version = i,
icache = l1i_cache,
dcache = l1d_cache,
ruby_system = ruby_system)
l1_cntrl.sequencer = cpu_seq
if piobus != None:
cpu_seq.pio_port = piobus.slave
if options.recycle_latency:
l1_cntrl.recycle_latency = options.recycle_latency
exec("system.l1_cntrl%d = l1_cntrl" % i)
#
# Add controllers and sequencers to the appropriate lists
#
cpu_sequencers.append(cpu_seq)
l1_cntrl_nodes.append(l1_cntrl)
cntrl_count += 1
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
mem_module_size = phys_mem_size / options.num_dirs
#
# determine size and index bits for probe filter
# By default, the probe filter size is configured to be twice the
# size of the L2 cache.
#
pf_size = MemorySize(options.l2_size)
pf_size.value = pf_size.value * 2
dir_bits = int(math.log(options.num_dirs, 2))
pf_bits = int(math.log(pf_size.value, 2))
if options.numa_high_bit:
if options.numa_high_bit > 0:
# if numa high bit explicitly set, make sure it does not overlap
# with the probe filter index
assert(options.numa_high_bit - dir_bits > pf_bits)
# set the probe filter start bit to just above the block offset
pf_start_bit = 6
else:
if dir_bits > 0:
pf_start_bit = dir_bits + 5
else:
pf_start_bit = 6
for i in xrange(options.num_dirs):
#
# Create the Ruby objects associated with the directory controller
#
mem_cntrl = RubyMemoryControl(version = i)
dir_size = MemorySize('0B')
dir_size.value = mem_module_size
pf = ProbeFilter(size = pf_size, assoc = 4,
start_index_bit = pf_start_bit)
dir_cntrl = Directory_Controller(version = i,
cntrl_id = cntrl_count,
directory = \
RubyDirectoryMemory( \
version = i,
size = dir_size,
use_map = options.use_map,
map_levels = \
options.map_levels,
numa_high_bit = \
options.numa_high_bit),
probeFilter = pf,
memBuffer = mem_cntrl,
probe_filter_enabled = options.pf_on,
full_bit_dir_enabled = options.dir_on,
ruby_system = ruby_system)
if options.recycle_latency:
dir_cntrl.recycle_latency = options.recycle_latency
exec("system.dir_cntrl%d = dir_cntrl" % i)
dir_cntrl_nodes.append(dir_cntrl)
cntrl_count += 1
for i, dma_port in enumerate(dma_ports):
#
# Create the Ruby objects associated with the dma controller
#
dma_seq = DMASequencer(version = i,
ruby_system = ruby_system)
dma_cntrl = DMA_Controller(version = i,
cntrl_id = cntrl_count,
dma_sequencer = dma_seq,
ruby_system = ruby_system)
exec("system.dma_cntrl%d = dma_cntrl" % i)
exec("system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i)
dma_cntrl_nodes.append(dma_cntrl)
if options.recycle_latency:
dma_cntrl.recycle_latency = options.recycle_latency
cntrl_count += 1
all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes
topology = create_topology(all_cntrls, options)
return (cpu_sequencers, dir_cntrl_nodes, topology)