Go to file
Boris Shingarov d765dbf22c arm: remote GDB: rationalize structure of register offsets
Currently, the wire format of register values in g- and G-packets is
modelled using a union of uint8/16/32/64 arrays.  The offset positions
of each register are expressed as a "register count" scaled according
to the width of the register in question.  This results in counter-
intuitive and error-prone "register count arithmetic", and some
formats would even be altogether unrepresentable in such model, e.g.
a 64-bit register following a 32-bit one would have a fractional index
in the regs64 array.
Another difficulty is that the array is allocated before the actual
architecture of the workload is known (and therefore before the correct
size for the array can be calculated).

With this patch I propose a simpler mechanism for expressing the
register set structure.  In the new code, GdbRegCache is an abstract
class; its subclasses contain straightforward structs reflecting the
register representation.  The determination whether to use e.g. the
AArch32 vs. AArch64 register set (or SPARCv8 vs SPARCv9, etc.) is made
by polymorphically dispatching getregs() to the concrete subclass.
The subclass is not instantiated until it is needed for actual
g-/G-packet processing, when the mode is already known.

This patch is not meant to be merged in on its own, because it changes
the contract between src/base/remote_gdb.* and src/arch/*/remote_gdb.*,
so as it stands right now, it would break the other architectures.
In this patch only the base and the ARM code are provided for review;
once we agree on the structure, I will provide src/arch/*/remote_gdb.*
for the other architectures; those patches could then be merged in
together.

Review Request: http://reviews.gem5.org/r/3207/
Pushed by Joel Hestness <jthestness@gmail.com>
2015-12-18 15:12:07 -06:00
build_opts scons: Do not build the InOrderCPU 2015-01-20 08:12:45 -05:00
configs configs: Make the default memtest behaviour more complex 2015-12-17 17:07:22 -05:00
ext ext: fix SST connector 2015-12-08 14:30:31 -06:00
src arm: remote GDB: rationalize structure of register offsets 2015-12-18 15:12:07 -06:00
system arm: Bootloader fix for v8 over 16 cores 2015-07-15 14:43:35 +01:00
tests stats: bump stats to reflect ruby tester changes 2015-12-12 17:27:38 -05:00
util cpu: Support virtual addr in elastic traces 2015-12-07 16:42:16 -06:00
.hgignore misc: ignore object files and static libs in util/m5 2015-11-13 17:03:48 -05:00
.hgtags Added tag stable_2015_09_03 for changeset 60eb3fef9c2d 2015-09-03 15:38:46 -05:00
COPYING copyright: Add code for finding all copyright blocks and create a COPYING file 2011-06-02 17:36:07 -07:00
LICENSE copyright: Add code for finding all copyright blocks and create a COPYING file 2011-06-02 17:36:07 -07:00
README misc: README direct to website for dependencies 2014-08-26 10:12:04 -04:00
SConstruct sim: Add support for generating back traces on errors 2015-12-04 00:12:58 +00:00

This is the gem5 simulator.

The main website can be found at http://www.gem5.org

A good starting point is http://www.gem5.org/Introduction, and for
more information about building the simulator and getting started
please see http://www.gem5.org/Documentation and
http://www.gem5.org/Tutorials.

To build gem5, you will need the following software: g++ or clang,
Python (gem5 links in the Python interpreter), SCons, SWIG, zlib, m4,
and lastly protobuf if you want trace capture and playback
support. Please see http://www.gem5.org/Dependencies for more details
concerning the minimum versions of the aforementioned tools.

Once you have all dependencies resolved, type 'scons
build/<ARCH>/gem5.opt' where ARCH is one of ALPHA, ARM, NULL, MIPS,
POWER, SPARC, or X86. This will build an optimized version of the gem5
binary (gem5.opt) for the the specified architecture. See
http://www.gem5.org/Build_System for more details and options.

With the simulator built, have a look at
http://www.gem5.org/Running_gem5 for more information on how to use
gem5.

The basic source release includes these subdirectories:
   - configs: example simulation configuration scripts
   - ext: less-common external packages needed to build gem5
   - src: source code of the gem5 simulator
   - system: source for some optional system software for simulated systems
   - tests: regression tests
   - util: useful utility programs and files

To run full-system simulations, you will need compiled system firmware
(console and PALcode for Alpha), kernel binaries and one or more disk
images. Please see the gem5 download page for these items at
http://www.gem5.org/Download

If you have questions, please send mail to gem5-users@gem5.org

Enjoy using gem5 and please share your modifications and extensions.