gem5/sim/pyconfig/m5config.py
Nathan Binkert d728d44b55 More configuration fixes
sim/pyconfig/m5config.py:
    put panic, AddToPath, and Import here so they're always available.

--HG--
extra : convert_revision : 104dba5ccac0d64479b4109d477b5192c4b07a6e
2005-01-18 15:28:34 -05:00

1239 lines
41 KiB
Python

# Copyright (c) 2004 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import generators
import os, re, sys, types
env = {}
env.update(os.environ)
def defined(key):
return env.has_key(key)
def define(key, value = True):
env[key] = value
def panic(*args, **kwargs):
sys.exit(*args, **kwargs)
def AddToPath(path):
path = os.path.realpath(path)
if os.path.isdir(path):
sys.path.append(path)
def Import(path):
AddToPath(os.path.dirname(path))
exec('from m5config import *')
mpy_exec(file(path, 'r'))
def issequence(value):
return isinstance(value, tuple) or isinstance(value, list)
class Singleton(type):
def __call__(cls, *args, **kwargs):
if hasattr(cls, '_instance'):
return cls._instance
cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instance
if os.environ.has_key('FULL_SYSTEM'):
FULL_SYSTEM = True
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the deisred simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache('my_cache', root, size=64*K)
# cache.hit_latency = 3
# cache.assoc = 8
#
# (The first two constructor arguments specify the name of the created
# cache and its parent node in the hierarchy.)
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# The Python module provides another class, ConfigNode, which is a
# superclass of SimObject. ConfigNode implements the parent/child
# relationship for building the configuration hierarchy tree.
# Concrete instances of ConfigNode can be used to group objects in the
# hierarchy, but do not correspond to SimObjects themselves (like a
# .ini section with "children=" but no "type=".
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file. See simple-4cpu.py for an example
# (corresponding to m5-test/simple-4cpu.ini).
#
#####################################################################
#####################################################################
#
# ConfigNode/SimObject classes
#
# The Python class hierarchy rooted by ConfigNode (which is the base
# class of SimObject, which in turn is the base class of all other M5
# SimObject classes) has special attribute behavior. In general, an
# object in this hierarchy has three categories of attribute-like
# things:
#
# 1. Regular Python methods and variables. These must start with an
# underscore to be treated normally.
#
# 2. SimObject parameters. These values are stored as normal Python
# attributes, but all assignments to these attributes are checked
# against the pre-defined set of parameters stored in the class's
# _params dictionary. Assignments to attributes that do not
# correspond to predefined parameters, or that are not of the correct
# type, incur runtime errors.
#
# 3. Hierarchy children. The child nodes of a ConfigNode are stored
# in the node's _children dictionary, but can be accessed using the
# Python attribute dot-notation (just as they are printed out by the
# simulator). Children cannot be created using attribute assigment;
# they must be added by specifying the parent node in the child's
# constructor or using the '+=' operator.
# The SimObject parameters are the most complex, for a few reasons.
# First, both parameter descriptions and parameter values are
# inherited. Thus parameter description lookup must go up the
# inheritance chain like normal attribute lookup, but this behavior
# must be explicitly coded since the lookup occurs in each class's
# _params attribute. Second, because parameter values can be set
# on SimObject classes (to implement default values), the parameter
# checking behavior must be enforced on class attribute assignments as
# well as instance attribute assignments. Finally, because we allow
# class specialization via inheritance (e.g., see the L1Cache class in
# the simple-4cpu.py example), we must do parameter checking even on
# class instantiation. To provide all these features, we use a
# metaclass to define most of the SimObject parameter behavior for
# this class hierarchy.
#
#####################################################################
class Proxy(object):
def __init__(self, path = ()):
self._object = None
self._path = path
def __getattr__(self, attr):
return Proxy(self._path + (attr, ))
def __setattr__(self, attr, value):
if not attr.startswith('_'):
raise AttributeError, 'cannot set attribute %s' % attr
super(Proxy, self).__setattr__(attr, value)
def _convert(self):
obj = self._object
for attr in self._path:
obj = obj.__getattribute__(attr)
return obj
Super = Proxy()
def isSubClass(value, cls):
try:
return issubclass(value, cls)
except:
return False
def isParam(self):
return isinstance(self, _Param)
def isConfigNode(value):
try:
return issubclass(value, ConfigNode)
except:
return False
def isSimObject(value):
try:
return issubclass(value, SimObject)
except:
return False
def isSimObjSequence(value):
if not issequence(value):
return False
for val in value:
if not isNullPointer(val) and not isConfigNode(val):
return False
return True
# The metaclass for ConfigNode (and thus for everything that derives
# from ConfigNode, including SimObject). This class controls how new
# classes that derive from ConfigNode are instantiated, and provides
# inherited class behavior (just like a class controls how instances
# of that class are instantiated, and provides inherited instance
# behavior).
class MetaConfigNode(type):
keywords = { 'abstract' : types.BooleanType,
'check' : types.FunctionType,
'_init' : types.FunctionType,
'type' : (types.NoneType, types.StringType) }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
priv = { 'abstract' : False,
# initialize _params and _values dicts to empty
'_params' : {},
'_values' : {},
'_disable' : {} }
for key,val in dict.items():
if mcls.keywords.has_key(key):
if not isinstance(val, mcls.keywords[key]):
raise TypeError, \
'keyword %s has the wrong type %s should be %s' % \
(key, type(val), mcls.keywords[key])
if isinstance(val, types.FunctionType):
val = classmethod(val)
priv[key] = val
del dict[key]
elif key.startswith('_'):
priv[key] = val
del dict[key]
elif not isNullPointer(val) and isConfigNode(val):
dict[key] = val()
elif isSimObjSequence(val):
dict[key] = [ v() for v in val ]
# If your parent has a value in it that's a config node, clone it.
for base in bases:
if not isConfigNode(base):
continue
for name,value in base._values.iteritems():
if dict.has_key(name):
continue
if isConfigNode(value):
priv['_values'][name] = value()
elif isSimObjSequence(value):
priv['_values'][name] = [ val() for val in value ]
# entries left in dict will get passed to __init__, where we'll
# deal with them as params.
return super(MetaConfigNode, mcls).__new__(mcls, name, bases, priv)
# initialization: start out with an empty _params dict (makes life
# simpler if we can assume _params is always valid).
def __init__(cls, name, bases, dict):
super(MetaConfigNode, cls).__init__(cls, name, bases, {})
cls._bases = [c for c in cls.__mro__ if isConfigNode(c)]
# initialize attributes with values from class definition
for pname,value in dict.iteritems():
setattr(cls, pname, value)
if hasattr(cls, '_init'):
cls._init()
del cls._init
def _isvalue(cls, name):
for c in cls._bases:
if c._params.has_key(name):
return True
for c in cls._bases:
if c._values.has_key(name):
return True
return False
# generator that iterates across all parameters for this class and
# all classes it inherits from
def _getparams(cls):
params = {}
for c in cls._bases:
for p,v in c._params.iteritems():
if not params.has_key(p):
params[p] = v
return params
# Lookup a parameter description by name in the given class.
def _getparam(cls, name, default = AttributeError):
for c in cls._bases:
if c._params.has_key(name):
return c._params[name]
if isSubClass(default, Exception):
raise default, \
"object '%s' has no attribute '%s'" % (cls.__name__, name)
else:
return default
def _setparam(cls, name, value):
cls._params[name] = value
def _hasvalue(cls, name):
for c in cls._bases:
if c._values.has_key(name):
return True
return False
def _getvalues(cls):
values = {}
for i,c in enumerate(cls._bases):
for p,v in c._values.iteritems():
if not values.has_key(p):
values[p] = v
return values
def _getvalue(cls, name, default = AttributeError):
value = None
for c in cls._bases:
if c._values.has_key(name):
value = c._values[name]
break
if value is not None:
return value
param = cls._getparam(name, None)
if param is not None and hasattr(param, 'default'):
param.valid(param.default)
value = param.default
cls._setvalue(name, value)
return value
if isSubClass(default, Exception):
raise default, 'value for %s not found' % name
else:
return default
def _setvalue(cls, name, value):
cls._values[name] = value
def _getdisable(cls, name):
for c in cls._bases:
if c._disable.has_key(name):
return c._disable[name]
return False
def _setdisable(cls, name, value):
cls._disable[name] = value
def __getattr__(cls, attr):
if cls._isvalue(attr):
return Value(cls, attr)
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, cls)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
raise TypeError, \
"keyword '%s' can only be set in a simobj definition" % attr
if isParam(value):
cls._setparam(attr, value)
return
# must be SimObject param
param = cls._getparam(attr, None)
if param:
# It's ok: set attribute by delegating to 'object' class.
# Note the use of param.make_value() to verify/canonicalize
# the assigned value
param.valid(value)
cls._setvalue(attr, value)
elif isConfigNode(value) or isSimObjSequence(value):
cls._setvalue(attr, value)
else:
for p,v in cls._getparams().iteritems():
print p,v
raise AttributeError, \
"Class %s has no parameter %s" % (cls.__name__, attr)
def add_child(cls, instance, name, child):
if isNullPointer(child) or instance.top_child_names.has_key(name):
return
if issequence(child):
kid = []
for i,c in enumerate(child):
n = '%s%d' % (name, i)
k = c.instantiate(n, instance)
instance.children.append(k)
instance.child_names[n] = k
instance.child_objects[c] = k
kid.append(k)
else:
kid = child.instantiate(name, instance)
instance.children.append(kid)
instance.child_names[name] = kid
instance.child_objects[child] = kid
instance.top_child_names[name] = kid
# Print instance info to .ini file.
def instantiate(cls, name, parent = None):
instance = Node(name, cls, cls.type, parent)
if hasattr(cls, 'check'):
cls.check()
for key,value in cls._getvalues().iteritems():
if cls._getdisable(key):
continue
if isConfigNode(value):
cls.add_child(instance, key, value)
if issequence(value):
list = [ v for v in value if isConfigNode(v) ]
if len(list):
cls.add_child(instance, key, list)
for pname,param in cls._getparams().iteritems():
try:
if cls._getdisable(pname):
continue
value = cls._getvalue(pname)
if isConfigNode(value):
value = instance.child_objects[value]
elif issequence(value):
v = []
for val in value:
if isConfigNode(val):
v.append(instance.child_objects[val])
else:
v.append(val)
value = v
p = NodeParam(pname, param, value)
instance.params.append(p)
instance.param_names[pname] = p
except:
print 'Exception while evaluating %s.%s' % \
(instance.path, pname)
raise
return instance
def _convert(cls, value):
realvalue = value
if isinstance(value, Node):
realvalue = value.realtype
if isinstance(realvalue, Proxy):
return value
if realvalue == None or isNullPointer(realvalue):
return value
if isSubClass(realvalue, cls):
return value
raise TypeError, 'object %s type %s wrong type, should be %s' % \
(repr(realvalue), realvalue, cls)
def _string(cls, value):
if isNullPointer(value):
return 'Null'
return Node._string(value)
# The ConfigNode class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class ConfigNode(object):
# Specify metaclass. Any class inheriting from ConfigNode will
# get this metaclass.
__metaclass__ = MetaConfigNode
type = None
def __new__(cls, **kwargs):
return MetaConfigNode(cls.__name__, (cls, ), kwargs)
# Set attribute. All attribute assignments go through here. Must
# be private attribute (starts with '_') or valid parameter entry.
# Basically identical to MetaConfigClass.__setattr__(), except
# this sets attributes on specific instances rather than on classes.
#def __setattr__(self, attr, value):
# if attr.startswith('_'):
# object.__setattr__(self, attr, value)
# return
# not private; look up as param
# param = self.__class__.lookup_param(attr)
# if not param:
# raise AttributeError, \
# "Class %s has no parameter %s" \
# % (self.__class__.__name__, attr)
# It's ok: set attribute by delegating to 'object' class.
# Note the use of param.make_value() to verify/canonicalize
# the assigned value.
# v = param.convert(value)
# object.__setattr__(self, attr, v)
# SimObject is a minimal extension of ConfigNode, implementing a
# hierarchy node that corresponds to an M5 SimObject. It prints out a
# "type=" line to indicate its SimObject class, prints out the
# assigned parameters corresponding to its class, and allows
# parameters to be set by keyword in the constructor. Note that most
# of the heavy lifting for the SimObject param handling is done in the
# MetaConfigNode metaclass.
class SimObject(ConfigNode):
def _sim_code(cls):
name = cls.__name__
param_names = cls._params.keys()
param_names.sort()
code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name
decls = [" " + cls._params[pname].sim_decl(pname) \
for pname in param_names]
code += "\n".join(decls) + "\n"
code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name
code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name
inits = [" " + cls._params[pname].sim_init(pname) \
for pname in param_names]
code += ",\n".join(inits) + "\n"
code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name
return code
_sim_code = classmethod(_sim_code)
class NodeParam(object):
def __init__(self, name, param, value):
self.name = name
self.param = param
self.ptype = param.ptype
self.convert = param.convert
self.string = param.string
self.value = value
class Node(object):
all = {}
def __init__(self, name, realtype, type, parent):
self.name = name
self.realtype = realtype
self.type = type
self.parent = parent
self.children = []
self.child_names = {}
self.child_objects = {}
self.top_child_names = {}
self.params = []
self.param_names = {}
path = [ self.name ]
node = self.parent
while node is not None:
if node.name != 'root':
path.insert(0, node.name)
else:
assert(node.parent is None)
node = node.parent
self.path = '.'.join(path)
def find(self, realtype, path):
rtype = eval(realtype)
if not path:
if issubclass(self.realtype, rtype):
return self, True
obj = None
for child in self.children:
if issubclass(child.realtype, rtype):
if obj is not None:
raise AttributeError, \
'Super matched more than one: %s %s' % \
(obj.path, child.path)
obj = child
return obj, obj is not None
try:
obj = self
for node in path[:-1]:
obj = obj.child_names[node]
last = path[-1]
if obj.child_names.has_key(last):
value = obj.child_names[last]
if issubclass(value.realtype, rtype):
return value, True
elif obj.param_names.has_key(last):
value = obj.param_names[last]
rtype._convert(value.value)
return value.value, True
except KeyError:
pass
return None, False
def unproxy(self, ptype, value):
if not isinstance(value, Proxy):
return value
if value is None:
raise AttributeError, 'Error while fixing up %s' % self.path
obj = self
done = False
while not done:
if obj is None:
raise AttributeError, \
'Parent of %s type %s not found at path %s' \
% (self.name, ptype, value._path)
found, done = obj.find(ptype, value._path)
if isinstance(found, Proxy):
done = false
obj = obj.parent
return found
def fixup(self):
self.all[self.path] = self
for param in self.params:
ptype = param.ptype
pval = param.value
try:
if issequence(pval):
param.value = [ self.unproxy(ptype, pv) for pv in pval ]
else:
param.value = self.unproxy(ptype, pval)
except:
print 'Error while fixing up %s:%s' % (self.path, param.name)
raise
for child in self.children:
assert(child != self)
child.fixup()
# print type and parameter values to .ini file
def display(self):
print '[' + self.path + ']' # .ini section header
if isSimObject(self.realtype):
print 'type = %s' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0).
print 'children =', ' '.join([ c.name for c in self.children])
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.convert(param.value)
string = param.string(value)
except:
print 'exception in %s:%s' % (self.path, param.name)
raise
print '%s = %s' % (param.name, string)
print
# recursively dump out children
for c in self.children:
c.display()
def _string(cls, value):
if not isinstance(value, Node):
raise AttributeError, 'expecting %s got %s' % (Node, value)
return value.path
_string = classmethod(_string)
#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to
# either a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (loaded from the PARAM section of the .odesc files). The
# _convert() method on these objects is used to force whatever value
# is assigned to the parameter to the appropriate type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaConfigNode._setparams()); after that point they aren't used.
#
#####################################################################
def isNullPointer(value):
return isinstance(value, NullSimObject)
class Value(object):
def __init__(self, obj, attr):
super(Value, self).__setattr__('attr', attr)
super(Value, self).__setattr__('obj', obj)
def _getattr(self):
return self.obj._getvalue(self.attr)
def __setattr__(self, attr, value):
if attr == 'disable':
self.obj._setdisable(self.attr, value)
else:
setattr(self._getattr(), attr, value)
def __getattr__(self, attr):
if attr == 'disable':
return self.obj._getdisable(self.attr)
else:
return getattr(self._getattr(), attr)
def __getitem__(self, index):
return self._getattr().__getitem__(index)
def __call__(self, *args, **kwargs):
return self._getattr().__call__(*args, **kwargs)
def __nonzero__(self):
return bool(self._getattr())
def __str__(self):
return str(self._getattr())
# Regular parameter.
class _Param(object):
def __init__(self, ptype, *args, **kwargs):
self.ptype = ptype
if args:
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'too many arguments'
if kwargs.has_key('desc'):
assert(not hasattr(self, 'desc'))
self.desc = kwargs['desc']
del kwargs['desc']
if kwargs.has_key('default'):
assert(not hasattr(self, 'default'))
self.default = kwargs['default']
del kwargs['default']
if kwargs:
raise TypeError, 'extra unknown kwargs %s' % kwargs
if not hasattr(self, 'desc'):
raise TypeError, 'desc attribute missing'
def valid(self, value):
if not isinstance(value, Proxy):
ptype = eval(self.ptype)
ptype._convert(value)
def convert(self, value):
ptype = eval(self.ptype)
return ptype._convert(value)
def string(self, value):
ptype = eval(self.ptype)
return ptype._string(value)
def get(self, name, instance, owner):
# nothing to do if None or already correct type. Also allow NULL
# pointer to be assigned where a SimObject is expected.
try:
if value == None or isinstance(value, self.ptype) or \
isConfigNode(self.ptype) and \
(isNullPointer(value) or issubclass(value, self.ptype)):
return value
except TypeError:
# this type conversion will raise an exception if it's illegal
return self.ptype(value)
def set(self, name, instance, value):
instance.__dict__[name] = value
def sim_decl(self, name):
return 'Param<%s> %s;' % (self.ptype.__name__, name)
def sim_init(self, name):
if self.default == None:
return 'INIT_PARAM(%s, "%s")' % (name, self.desc)
else:
return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \
(name, self.desc, str(self.default))
class _ParamProxy(object):
def __init__(self, type):
self.ptype = type
# E.g., Param.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
return _Param(self.ptype, *args, **kwargs)
def __getattr__(self, attr):
if attr == '__bases__':
raise AttributeError, ''
cls = type(self)
return cls(attr)
def __setattr__(self, attr, value):
if attr != 'ptype':
raise AttributeError, \
'Attribute %s not available in %s' % (attr, self.__class__)
super(_ParamProxy, self).__setattr__(attr, value)
Param = _ParamProxy(None)
# Vector-valued parameter description. Just like Param, except that
# the value is a vector (list) of the specified type instead of a
# single value.
class _VectorParam(_Param):
def __init__(self, type, *args, **kwargs):
_Param.__init__(self, type, *args, **kwargs)
def valid(self, value):
if value == None:
return True
ptype = eval(self.ptype)
if issequence(value):
for val in value:
if not isinstance(val, Proxy):
ptype._convert(val)
elif not isinstance(value, Proxy):
ptype._convert(value)
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def convert(self, value):
if value == None:
return []
ptype = eval(self.ptype)
if issequence(value):
# list: coerce each element into new list
return [ ptype._convert(v) for v in value ]
else:
# singleton: coerce & wrap in a list
return ptype._convert(value)
def string(self, value):
ptype = eval(self.ptype)
if issequence(value):
return ' '.join([ ptype._string(v) for v in value])
else:
return ptype._string(value)
def sim_decl(self, name):
return 'VectorParam<%s> %s;' % (self.ptype.__name__, name)
class _VectorParamProxy(_ParamProxy):
# E.g., VectorParam.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
return _VectorParam(self.ptype, *args, **kwargs)
VectorParam = _VectorParamProxy(None)
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method). Eventually we'll need these types
# to correspond to distinct C++ types as well.
#
#####################################################################
# Integer parameter type.
class _CheckedInt(object):
def _convert(cls, value):
t = type(value)
if t == bool:
return int(value)
if t != int and t != long and t != float and t != str:
raise TypeError, 'Integer parameter of invalid type %s' % t
if t == str or t == float:
value = long(value)
if not cls._min <= value <= cls._max:
raise TypeError, 'Integer parameter out of bounds %d < %d < %d' % \
(cls._min, value, cls._max)
return value
_convert = classmethod(_convert)
def _string(cls, value):
return str(value)
_string = classmethod(_string)
class CheckedInt(type):
def __new__(cls, name, min, max):
# New class derives from _CheckedInt base with proper bounding
# parameters
dict = { '_name' : name, '_min' : min, '_max' : max }
return type.__new__(cls, name, (_CheckedInt, ), dict)
class CheckedIntType(CheckedInt):
def __new__(cls, name, size, unsigned):
dict = {}
if unsigned:
min = 0
max = 2 ** size - 1
else:
min = -(2 ** (size - 1))
max = (2 ** (size - 1)) - 1
return super(cls, CheckedIntType).__new__(cls, name, min, max)
Int = CheckedIntType('int', 32, False)
Unsigned = CheckedIntType('unsigned', 32, True)
Int8 = CheckedIntType('int8_t', 8, False)
UInt8 = CheckedIntType('uint8_t', 8, True)
Int16 = CheckedIntType('int16_t', 16, False)
UInt16 = CheckedIntType('uint16_t', 16, True)
Int32 = CheckedIntType('int32_t', 32, False)
UInt32 = CheckedIntType('uint32_t', 32, True)
Int64 = CheckedIntType('int64_t', 64, False)
UInt64 = CheckedIntType('uint64_t', 64, True)
Counter = CheckedIntType('Counter', 64, True)
Addr = CheckedIntType('Addr', 64, True)
Tick = CheckedIntType('Tick', 64, True)
Percent = CheckedInt('int', 0, 100)
class Pair(object):
def __init__(self, first, second):
self.first = first
self.second = second
class _Range(object):
def _convert(cls, value):
if not isinstance(value, Pair):
raise TypeError, 'value %s is not a Pair' % value
return Pair(cls._type._convert(value.first),
cls._type._convert(value.second))
_convert = classmethod(_convert)
def _string(cls, value):
return '%s:%s' % (cls._type._string(value.first),
cls._type._string(value.second))
_string = classmethod(_string)
def RangeSize(start, size):
return Pair(start, start + size - 1)
class Range(type):
def __new__(cls, type):
dict = { '_name' : 'Range<%s>' + type._name, '_type' : type }
cname = 'Range_' + type.__name__
return super(cls, Range).__new__(cls, cname, (_Range, ), dict)
AddrRange = Range(Addr)
# Boolean parameter type.
class Bool(object):
_name = 'bool'
def _convert(value):
t = type(value)
if t == bool:
return value
if t == int or t == long:
return bool(value)
if t == str:
v = value.lower()
if v == "true" or v == "t" or v == "yes" or v == "y":
return True
elif v == "false" or v == "f" or v == "no" or v == "n":
return False
raise TypeError, 'Bool parameter (%s) of invalid type %s' % (v, t)
_convert = staticmethod(_convert)
def _string(value):
if value:
return "true"
else:
return "false"
_string = staticmethod(_string)
# String-valued parameter.
class String(object):
_name = 'string'
# Constructor. Value must be Python string.
def _convert(cls,value):
if value is None:
return ''
if isinstance(value, str):
return value
raise TypeError, \
"String param got value %s %s" % (repr(value), type(value))
_convert = classmethod(_convert)
# Generate printable string version. Not too tricky.
def _string(cls, value):
return value
_string = classmethod(_string)
def IncEthernetAddr(addr, val = 1):
bytes = map(lambda x: int(x, 16), addr.split(':'))
bytes[5] += val
for i in (5, 4, 3, 2, 1):
val,rem = divmod(bytes[i], 256)
bytes[i] = rem
if val == 0:
break
bytes[i - 1] += val
assert(bytes[0] <= 255)
return ':'.join(map(lambda x: '%02x' % x, bytes))
class NextEthernetAddr(object):
__metaclass__ = Singleton
addr = "00:90:00:00:00:01"
def __init__(self, inc = 1):
self.value = self.addr
self.addr = IncEthernetAddr(self.addr, inc)
class EthernetAddr(object):
_name = 'EthAddr'
def _convert(cls, value):
if value == NextEthernetAddr:
return value
if not isinstance(value, str):
raise TypeError, "expected an ethernet address and didn't get one"
bytes = value.split(':')
if len(bytes) != 6:
raise TypeError, 'invalid ethernet address %s' % value
for byte in bytes:
if not 0 <= int(byte) <= 256:
raise TypeError, 'invalid ethernet address %s' % value
return value
_convert = classmethod(_convert)
def _string(cls, value):
if value == NextEthernetAddr:
value = value().value
return value
_string = classmethod(_string)
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
__metaclass__ = Singleton
_name = 'NULL'
def __call__(cls):
return cls
def _sim_code(cls):
pass
_sim_code = classmethod(_sim_code)
def _instantiate(self, parent = None, path = ''):
pass
def _convert(cls, value):
if value == Nxone:
return
if isinstance(value, cls):
return value
raise TypeError, 'object %s %s of the wrong type, should be %s' % \
(repr(value), type(value), cls)
_convert = classmethod(_convert)
def _string():
return 'NULL'
_string = staticmethod(_string)
# The only instance you'll ever need...
Null = NULL = NullSimObject()
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
# Base class for Enum types.
class _Enum(object):
def _convert(self, value):
if value not in self.map:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.map)
return value
_convert = classmethod(_convert)
# Generate printable string version of value.
def _string(self, value):
return str(value)
_string = classmethod(_string)
# Enum metaclass... calling Enum(foo) generates a new type (class)
# that derives from _ListEnum or _DictEnum as appropriate.
class Enum(type):
# counter to generate unique names for generated classes
counter = 1
def __new__(cls, *args):
if len(args) > 1:
enum_map = args
else:
enum_map = args[0]
if isinstance(enum_map, dict):
map = enum_map
elif issequence(enum_map):
map = {}
for idx,val in enumerate(enum_map):
map[val] = idx
else:
raise TypeError, "Enum map must be list or dict (got %s)" % map
classname = "Enum%04d" % Enum.counter
Enum.counter += 1
# New class derives from _Enum base, and gets a 'map'
# attribute containing the specified list or dict.
return type.__new__(cls, classname, (_Enum, ), { 'map': map })
#
# "Constants"... handy aliases for various values.
#
# For compatibility with C++ bool constants.
false = False
true = True
# Some memory range specifications use this as a default upper bound.
MAX_ADDR = Addr._max
# For power-of-two sizing, e.g. 64*K gives an integer value 65536.
K = 1024
M = K*K
G = K*M
#####################################################################
# Munge an arbitrary Python code string to get it to execute (mostly
# dealing with indentation). Stolen from isa_parser.py... see
# comments there for a more detailed description.
#def fixPythonIndentation(s):
# # get rid of blank lines first
# s = re.sub(r'(?m)^\s*\n', '', s);
# if (s != '' and re.match(r'[ \t]', s[0])):
# s = 'if 1:\n' + s
# return s
# Hook to generate C++ parameter code.
def gen_sim_code(file):
for objname in sim_object_list:
print >> file, eval("%s._sim_code()" % objname)
# The final hook to generate .ini files. Called from configuration
# script once config is built.
def instantiate(root):
if not issubclass(root, Root):
raise AttributeError, 'Can only instantiate the Root of the tree'
instance = root.instantiate('root')
instance.fixup()
instance.display()
from objects import *