gem5/cpu/ozone/cpu.hh
Kevin Lim d363d5aad7 Quiesce stuff.
cpu/ozone/cpu.hh:
    Add quiesce stat (not clear how it should be used yet).
cpu/ozone/cpu_impl.hh:
    Fix for quiesce.

--HG--
extra : convert_revision : a1998818e241374ae3f4c3cabbef885dda55c884
2006-04-24 17:40:00 -04:00

621 lines
16 KiB
C++

/*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OZONE_CPU_HH__
#define __CPU_OZONE_CPU_HH__
#include <set>
#include "base/statistics.hh"
#include "base/timebuf.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "cpu/inst_seq.hh"
#include "cpu/ozone/rename_table.hh"
#include "cpu/ozone/thread_state.hh"
#include "cpu/pc_event.hh"
#include "cpu/static_inst.hh"
#include "mem/mem_interface.hh"
#include "sim/eventq.hh"
// forward declarations
#if FULL_SYSTEM
#include "arch/alpha/tlb.hh"
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;
class MemoryController;
class RemoteGDB;
class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM
class Checkpoint;
class MemInterface;
namespace Trace {
class InstRecord;
}
/**
* Declaration of Out-of-Order CPU class. Basically it is a SimpleCPU with
* simple out-of-order capabilities added to it. It is still a 1 CPI machine
* (?), but is capable of handling cache misses. Basically it models having
* a ROB/IQ by only allowing a certain amount of instructions to execute while
* the cache miss is outstanding.
*/
template <class Impl>
class OzoneCPU : public BaseCPU
{
private:
typedef typename Impl::FrontEnd FrontEnd;
typedef typename Impl::BackEnd BackEnd;
typedef typename Impl::DynInst DynInst;
typedef typename Impl::DynInst DynInst;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef TheISA::MiscReg MiscReg;
public:
class OzoneXC : public ExecContext {
public:
OzoneCPU<Impl> *cpu;
OzoneThreadState<Impl> *thread;
BaseCPU *getCpuPtr();
void setCpuId(int id);
int readCpuId() { return thread->cpuId; }
FunctionalMemory *getMemPtr() { return thread->mem; }
#if FULL_SYSTEM
System *getSystemPtr() { return cpu->system; }
PhysicalMemory *getPhysMemPtr() { return cpu->physmem; }
AlphaITB *getITBPtr() { return cpu->itb; }
AlphaDTB * getDTBPtr() { return cpu->dtb; }
#else
Process *getProcessPtr() { return thread->process; }
#endif
Status status() const { return thread->_status; }
void setStatus(Status new_status);
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Unallocated.
void deallocate();
/// Set the status to Halted.
void halt();
#if FULL_SYSTEM
void dumpFuncProfile();
#endif
void takeOverFrom(ExecContext *old_context);
void regStats(const std::string &name);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
#if FULL_SYSTEM
Event *getQuiesceEvent();
Tick readLastActivate();
Tick readLastSuspend();
void profileClear();
void profileSample();
#endif
int getThreadNum();
// Also somewhat obnoxious. Really only used for the TLB fault.
TheISA::MachInst getInst();
void copyArchRegs(ExecContext *xc);
void clearArchRegs();
uint64_t readIntReg(int reg_idx);
float readFloatRegSingle(int reg_idx);
double readFloatRegDouble(int reg_idx);
uint64_t readFloatRegInt(int reg_idx);
void setIntReg(int reg_idx, uint64_t val);
void setFloatRegSingle(int reg_idx, float val);
void setFloatRegDouble(int reg_idx, double val);
void setFloatRegInt(int reg_idx, uint64_t val);
uint64_t readPC() { return thread->PC; }
void setPC(Addr val);
uint64_t readNextPC() { return thread->nextPC; }
void setNextPC(Addr val);
public:
// ISA stuff:
MiscReg readMiscReg(int misc_reg);
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault);
Fault setMiscReg(int misc_reg, const MiscReg &val);
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val);
unsigned readStCondFailures()
{ return thread->storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ thread->storeCondFailures = sc_failures; }
#if FULL_SYSTEM
bool inPalMode() { return cpu->inPalMode(); }
#endif
bool misspeculating() { return false; }
#if !FULL_SYSTEM
TheISA::IntReg getSyscallArg(int i)
{ return thread->renameTable[TheISA::ArgumentReg0 + i]->readIntResult(); }
// used to shift args for indirect syscall
void setSyscallArg(int i, TheISA::IntReg val)
{ thread->renameTable[TheISA::ArgumentReg0 + i]->setIntResult(i); }
void setSyscallReturn(SyscallReturn return_value)
{ cpu->setSyscallReturn(return_value, thread->tid); }
Counter readFuncExeInst() { return thread->funcExeInst; }
void setFuncExeInst(Counter new_val)
{ thread->funcExeInst = new_val; }
#endif
};
// execution context proxy
OzoneXC xcProxy;
typedef OzoneThreadState<Impl> ImplState;
private:
OzoneThreadState<Impl> thread;
/*
// Squash event for when the XC needs to squash all inflight instructions.
struct XCSquashEvent : public Event
{
void process();
const char *description();
};
*/
public:
// main simulation loop (one cycle)
void tick();
std::set<InstSeqNum> snList;
private:
struct TickEvent : public Event
{
OzoneCPU *cpu;
int width;
TickEvent(OzoneCPU *c, int w);
void process();
const char *description();
};
TickEvent tickEvent;
/// Schedule tick event, regardless of its current state.
void scheduleTickEvent(int delay)
{
if (tickEvent.squashed())
tickEvent.reschedule(curTick + delay);
else if (!tickEvent.scheduled())
tickEvent.schedule(curTick + delay);
}
/// Unschedule tick event, regardless of its current state.
void unscheduleTickEvent()
{
if (tickEvent.scheduled())
tickEvent.squash();
}
private:
Trace::InstRecord *traceData;
template<typename T>
void trace_data(T data);
public:
//
enum Status {
Running,
Idle,
SwitchedOut
};
Status _status;
public:
bool checkInterrupts;
void post_interrupt(int int_num, int index);
void zero_fill_64(Addr addr) {
static int warned = 0;
if (!warned) {
warn ("WH64 is not implemented");
warned = 1;
}
};
typedef typename Impl::Params Params;
OzoneCPU(Params *params);
virtual ~OzoneCPU();
void init();
public:
BaseCPU *getCpuPtr() { return this; }
void setCpuId(int id) { cpuId = id; }
int readCpuId() { return cpuId; }
// FunctionalMemory *getMemPtr() { return mem; }
int cpuId;
void switchOut();
void takeOverFrom(BaseCPU *oldCPU);
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
AlphaITB *itb;
AlphaDTB *dtb;
System *system;
// the following two fields are redundant, since we can always
// look them up through the system pointer, but we'll leave them
// here for now for convenience
MemoryController *memctrl;
PhysicalMemory *physmem;
#endif
// L1 instruction cache
MemInterface *icacheInterface;
// L1 data cache
MemInterface *dcacheInterface;
/** Pointer to memory. */
FunctionalMemory *mem;
FrontEnd *frontEnd;
BackEnd *backEnd;
private:
Status status() const { return _status; }
void setStatus(Status new_status) { _status = new_status; }
// Not sure what an activate() call on the CPU's proxy XC would mean...
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
// statistics
virtual void regStats();
virtual void resetStats();
// number of simulated instructions
public:
Counter numInst;
Counter startNumInst;
// Stats::Scalar<> numInsts;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
private:
// number of simulated memory references
// Stats::Scalar<> numMemRefs;
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
// number of idle cycles
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
public:
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
#if FULL_SYSTEM
bool validInstAddr(Addr addr) { return true; }
bool validDataAddr(Addr addr) { return true; }
Fault translateInstReq(MemReqPtr &req)
{
return itb->translate(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return dtb->translate(req, false);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return dtb->translate(req, true);
}
#else
bool validInstAddr(Addr addr)
{ return true; }
bool validDataAddr(Addr addr)
{ return true; }
int getInstAsid() { return thread.asid; }
int getDataAsid() { return thread.asid; }
Fault dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return NoFault;
}
/** Translates instruction requestion in syscall emulation mode. */
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data read request in syscall emulation mode. */
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data write request in syscall emulation mode. */
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#endif
/** Old CPU read from memory function. No longer used. */
template <class T>
Fault read(MemReqPtr &req, T &data)
{
// panic("CPU READ NOT IMPLEMENTED W/NEW MEMORY\n");
#if 0
#if FULL_SYSTEM && defined(TARGET_ALPHA)
if (req->flags & LOCKED) {
req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
}
#endif
#endif
Fault error;
if (req->flags & LOCKED) {
// lockAddr = req->paddr;
lockFlag = true;
}
error = this->mem->read(req, data);
data = gtoh(data);
return error;
}
/** CPU read function, forwards read to LSQ. */
template <class T>
Fault read(MemReqPtr &req, T &data, int load_idx)
{
return backEnd->read(req, data, load_idx);
}
/** Old CPU write to memory function. No longer used. */
template <class T>
Fault write(MemReqPtr &req, T &data)
{
#if 0
#if FULL_SYSTEM && defined(TARGET_ALPHA)
ExecContext *xc;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
xc = req->xc;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
xc->setStCondFailures(0);//Needed? [RGD]
} else {
bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
req->result = lock_flag;
if (!lock_flag ||
((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
xc->setStCondFailures(xc->readStCondFailures() + 1);
if (((xc->readStCondFailures()) % 100000) == 0) {
std::cerr << "Warning: "
<< xc->readStCondFailures()
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->readCpuId()
<< std::endl;
}
return NoFault;
}
else xc->setStCondFailures(0);
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < this->system->execContexts.size(); i++){
xc = this->system->execContexts[i];
if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
(req->paddr & ~0xf)) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
}
}
#endif
#endif
if (req->flags & LOCKED) {
if (req->flags & UNCACHEABLE) {
req->result = 2;
} else {
if (this->lockFlag/* && this->lockAddr == req->paddr*/) {
req->result = 1;
} else {
req->result = 0;
return NoFault;
}
}
}
return this->mem->write(req, (T)htog(data));
}
/** CPU write function, forwards write to LSQ. */
template <class T>
Fault write(MemReqPtr &req, T &data, int store_idx)
{
return backEnd->write(req, data, store_idx);
}
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
InstSeqNum globalSeqNum;
public:
void squashFromXC();
// @todo: This can be a useful debug function. Implement it.
void dumpInsts() { frontEnd->dumpInsts(); }
#if FULL_SYSTEM
Fault hwrei();
int readIntrFlag() { return thread.regs.intrflag; }
void setIntrFlag(int val) { thread.regs.intrflag = val; }
bool inPalMode() { return AlphaISA::PcPAL(thread.PC); }
bool inPalMode(Addr pc) { return AlphaISA::PcPAL(pc); }
bool simPalCheck(int palFunc);
void processInterrupts();
#else
void syscall();
void setSyscallReturn(SyscallReturn return_value, int tid);
#endif
ExecContext *xcBase() { return &xcProxy; }
bool decoupledFrontEnd;
struct CommStruct {
InstSeqNum doneSeqNum;
InstSeqNum nonSpecSeqNum;
bool uncached;
unsigned lqIdx;
bool stall;
};
TimeBuffer<CommStruct> comm;
bool lockFlag;
Stats::Scalar<> quiesceCycles;
};
#endif // __CPU_OZONE_CPU_HH__