9f90291c54
this was double scheduling itself (once in constructor and once in cpu code). also add support for stopping / starting progress events through repeatEvent flag and also changing the interval of the progress event as well
445 lines
13 KiB
C++
445 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2002-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Authors: Steve Reinhardt
|
|
* Nathan Binkert
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
#include "base/cprintf.hh"
|
|
#include "base/loader/symtab.hh"
|
|
#include "base/misc.hh"
|
|
#include "base/output.hh"
|
|
#include "base/trace.hh"
|
|
#include "cpu/base.hh"
|
|
#include "cpu/cpuevent.hh"
|
|
#include "cpu/thread_context.hh"
|
|
#include "cpu/profile.hh"
|
|
#include "params/BaseCPU.hh"
|
|
#include "sim/sim_exit.hh"
|
|
#include "sim/process.hh"
|
|
#include "sim/sim_events.hh"
|
|
#include "sim/system.hh"
|
|
|
|
// Hack
|
|
#include "sim/stat_control.hh"
|
|
|
|
using namespace std;
|
|
|
|
vector<BaseCPU *> BaseCPU::cpuList;
|
|
|
|
// This variable reflects the max number of threads in any CPU. Be
|
|
// careful to only use it once all the CPUs that you care about have
|
|
// been initialized
|
|
int maxThreadsPerCPU = 1;
|
|
|
|
CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
|
|
: Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
|
|
cpu(_cpu), _repeatEvent(true)
|
|
{
|
|
if (_interval)
|
|
cpu->schedule(this, curTick + _interval);
|
|
}
|
|
|
|
void
|
|
CPUProgressEvent::process()
|
|
{
|
|
Counter temp = cpu->totalInstructions();
|
|
#ifndef NDEBUG
|
|
double ipc = double(temp - lastNumInst) / (_interval / cpu->ticks(1));
|
|
|
|
DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
|
|
"%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
|
|
ipc);
|
|
ipc = 0.0;
|
|
#else
|
|
cprintf("%lli: %s progress event, total committed:%i, progress insts "
|
|
"committed: %lli\n", curTick, cpu->name(), temp,
|
|
temp - lastNumInst);
|
|
#endif
|
|
lastNumInst = temp;
|
|
|
|
if (_repeatEvent)
|
|
cpu->schedule(this, curTick + _interval);
|
|
}
|
|
|
|
const char *
|
|
CPUProgressEvent::description() const
|
|
{
|
|
return "CPU Progress";
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
BaseCPU::BaseCPU(Params *p)
|
|
: MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id),
|
|
interrupts(p->interrupts),
|
|
number_of_threads(p->numThreads), system(p->system),
|
|
phase(p->phase)
|
|
#else
|
|
BaseCPU::BaseCPU(Params *p)
|
|
: MemObject(p), clock(p->clock), _cpuId(p->cpu_id),
|
|
number_of_threads(p->numThreads), system(p->system),
|
|
phase(p->phase)
|
|
#endif
|
|
{
|
|
// currentTick = curTick;
|
|
|
|
// if Python did not provide a valid ID, do it here
|
|
if (_cpuId == -1 ) {
|
|
_cpuId = cpuList.size();
|
|
}
|
|
|
|
// add self to global list of CPUs
|
|
cpuList.push_back(this);
|
|
|
|
DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId);
|
|
|
|
if (number_of_threads > maxThreadsPerCPU)
|
|
maxThreadsPerCPU = number_of_threads;
|
|
|
|
// allocate per-thread instruction-based event queues
|
|
comInstEventQueue = new EventQueue *[number_of_threads];
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
|
|
|
|
//
|
|
// set up instruction-count-based termination events, if any
|
|
//
|
|
if (p->max_insts_any_thread != 0) {
|
|
const char *cause = "a thread reached the max instruction count";
|
|
for (int i = 0; i < number_of_threads; ++i) {
|
|
Event *event = new SimLoopExitEvent(cause, 0);
|
|
comInstEventQueue[i]->schedule(event, p->max_insts_any_thread);
|
|
}
|
|
}
|
|
|
|
if (p->max_insts_all_threads != 0) {
|
|
const char *cause = "all threads reached the max instruction count";
|
|
|
|
// allocate & initialize shared downcounter: each event will
|
|
// decrement this when triggered; simulation will terminate
|
|
// when counter reaches 0
|
|
int *counter = new int;
|
|
*counter = number_of_threads;
|
|
for (int i = 0; i < number_of_threads; ++i) {
|
|
Event *event = new CountedExitEvent(cause, *counter);
|
|
comInstEventQueue[i]->schedule(event, p->max_insts_any_thread);
|
|
}
|
|
}
|
|
|
|
// allocate per-thread load-based event queues
|
|
comLoadEventQueue = new EventQueue *[number_of_threads];
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
comLoadEventQueue[i] = new EventQueue("load-based event queue");
|
|
|
|
//
|
|
// set up instruction-count-based termination events, if any
|
|
//
|
|
if (p->max_loads_any_thread != 0) {
|
|
const char *cause = "a thread reached the max load count";
|
|
for (int i = 0; i < number_of_threads; ++i) {
|
|
Event *event = new SimLoopExitEvent(cause, 0);
|
|
comLoadEventQueue[i]->schedule(event, p->max_loads_any_thread);
|
|
}
|
|
}
|
|
|
|
if (p->max_loads_all_threads != 0) {
|
|
const char *cause = "all threads reached the max load count";
|
|
// allocate & initialize shared downcounter: each event will
|
|
// decrement this when triggered; simulation will terminate
|
|
// when counter reaches 0
|
|
int *counter = new int;
|
|
*counter = number_of_threads;
|
|
for (int i = 0; i < number_of_threads; ++i) {
|
|
Event *event = new CountedExitEvent(cause, *counter);
|
|
comLoadEventQueue[i]->schedule(event, p->max_loads_all_threads);
|
|
}
|
|
}
|
|
|
|
functionTracingEnabled = false;
|
|
if (p->function_trace) {
|
|
functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
|
|
currentFunctionStart = currentFunctionEnd = 0;
|
|
functionEntryTick = p->function_trace_start;
|
|
|
|
if (p->function_trace_start == 0) {
|
|
functionTracingEnabled = true;
|
|
} else {
|
|
typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
|
|
Event *event = new wrap(this, true);
|
|
schedule(event, p->function_trace_start);
|
|
}
|
|
}
|
|
#if FULL_SYSTEM
|
|
interrupts->setCPU(this);
|
|
|
|
profileEvent = NULL;
|
|
if (params()->profile)
|
|
profileEvent = new ProfileEvent(this, params()->profile);
|
|
#endif
|
|
tracer = params()->tracer;
|
|
}
|
|
|
|
void
|
|
BaseCPU::enableFunctionTrace()
|
|
{
|
|
functionTracingEnabled = true;
|
|
}
|
|
|
|
BaseCPU::~BaseCPU()
|
|
{
|
|
}
|
|
|
|
void
|
|
BaseCPU::init()
|
|
{
|
|
if (!params()->defer_registration)
|
|
registerThreadContexts();
|
|
}
|
|
|
|
void
|
|
BaseCPU::startup()
|
|
{
|
|
#if FULL_SYSTEM
|
|
if (!params()->defer_registration && profileEvent)
|
|
schedule(profileEvent, curTick);
|
|
#endif
|
|
|
|
if (params()->progress_interval) {
|
|
Tick num_ticks = ticks(params()->progress_interval);
|
|
|
|
Event *event;
|
|
event = new CPUProgressEvent(this, num_ticks);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::regStats()
|
|
{
|
|
using namespace Stats;
|
|
|
|
numCycles
|
|
.name(name() + ".numCycles")
|
|
.desc("number of cpu cycles simulated")
|
|
;
|
|
|
|
int size = threadContexts.size();
|
|
if (size > 1) {
|
|
for (int i = 0; i < size; ++i) {
|
|
stringstream namestr;
|
|
ccprintf(namestr, "%s.ctx%d", name(), i);
|
|
threadContexts[i]->regStats(namestr.str());
|
|
}
|
|
} else if (size == 1)
|
|
threadContexts[0]->regStats(name());
|
|
|
|
#if FULL_SYSTEM
|
|
#endif
|
|
}
|
|
|
|
Tick
|
|
BaseCPU::nextCycle()
|
|
{
|
|
Tick next_tick = curTick - phase + clock - 1;
|
|
next_tick -= (next_tick % clock);
|
|
next_tick += phase;
|
|
return next_tick;
|
|
}
|
|
|
|
Tick
|
|
BaseCPU::nextCycle(Tick begin_tick)
|
|
{
|
|
Tick next_tick = begin_tick;
|
|
if (next_tick % clock != 0)
|
|
next_tick = next_tick - (next_tick % clock) + clock;
|
|
next_tick += phase;
|
|
|
|
assert(next_tick >= curTick);
|
|
return next_tick;
|
|
}
|
|
|
|
void
|
|
BaseCPU::registerThreadContexts()
|
|
{
|
|
for (int i = 0; i < threadContexts.size(); ++i) {
|
|
ThreadContext *tc = threadContexts[i];
|
|
|
|
/** This is so that contextId and cpuId match where there is a
|
|
* 1cpu:1context relationship. Otherwise, the order of registration
|
|
* could affect the assignment and cpu 1 could have context id 3, for
|
|
* example. We may even want to do something like this for SMT so that
|
|
* cpu 0 has the lowest thread contexts and cpu N has the highest, but
|
|
* I'll just do this for now
|
|
*/
|
|
if (number_of_threads == 1)
|
|
tc->setContextId(system->registerThreadContext(tc, _cpuId));
|
|
else
|
|
tc->setContextId(system->registerThreadContext(tc));
|
|
#if !FULL_SYSTEM
|
|
tc->getProcessPtr()->assignThreadContext(tc->contextId());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
BaseCPU::findContext(ThreadContext *tc)
|
|
{
|
|
for (int i = 0; i < threadContexts.size(); ++i) {
|
|
if (tc == threadContexts[i])
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
BaseCPU::switchOut()
|
|
{
|
|
// panic("This CPU doesn't support sampling!");
|
|
#if FULL_SYSTEM
|
|
if (profileEvent && profileEvent->scheduled())
|
|
deschedule(profileEvent);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc)
|
|
{
|
|
assert(threadContexts.size() == oldCPU->threadContexts.size());
|
|
|
|
_cpuId = oldCPU->cpuId();
|
|
|
|
for (int i = 0; i < threadContexts.size(); ++i) {
|
|
ThreadContext *newTC = threadContexts[i];
|
|
ThreadContext *oldTC = oldCPU->threadContexts[i];
|
|
|
|
newTC->takeOverFrom(oldTC);
|
|
|
|
CpuEvent::replaceThreadContext(oldTC, newTC);
|
|
|
|
assert(newTC->contextId() == oldTC->contextId());
|
|
assert(newTC->threadId() == oldTC->threadId());
|
|
system->replaceThreadContext(newTC, newTC->contextId());
|
|
|
|
/* This code no longer works since the zero register (e.g.,
|
|
* r31 on Alpha) doesn't necessarily contain zero at this
|
|
* point.
|
|
if (DTRACE(Context))
|
|
ThreadContext::compare(oldTC, newTC);
|
|
*/
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
interrupts = oldCPU->interrupts;
|
|
interrupts->setCPU(this);
|
|
|
|
for (int i = 0; i < threadContexts.size(); ++i)
|
|
threadContexts[i]->profileClear();
|
|
|
|
if (profileEvent)
|
|
schedule(profileEvent, curTick);
|
|
#endif
|
|
|
|
// Connect new CPU to old CPU's memory only if new CPU isn't
|
|
// connected to anything. Also connect old CPU's memory to new
|
|
// CPU.
|
|
if (!ic->isConnected()) {
|
|
Port *peer = oldCPU->getPort("icache_port")->getPeer();
|
|
ic->setPeer(peer);
|
|
peer->setPeer(ic);
|
|
}
|
|
|
|
if (!dc->isConnected()) {
|
|
Port *peer = oldCPU->getPort("dcache_port")->getPeer();
|
|
dc->setPeer(peer);
|
|
peer->setPeer(dc);
|
|
}
|
|
}
|
|
|
|
|
|
#if FULL_SYSTEM
|
|
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
|
|
: cpu(_cpu), interval(_interval)
|
|
{ }
|
|
|
|
void
|
|
BaseCPU::ProfileEvent::process()
|
|
{
|
|
for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
|
|
ThreadContext *tc = cpu->threadContexts[i];
|
|
tc->profileSample();
|
|
}
|
|
|
|
cpu->schedule(this, curTick + interval);
|
|
}
|
|
|
|
void
|
|
BaseCPU::serialize(std::ostream &os)
|
|
{
|
|
SERIALIZE_SCALAR(instCnt);
|
|
interrupts->serialize(os);
|
|
}
|
|
|
|
void
|
|
BaseCPU::unserialize(Checkpoint *cp, const std::string §ion)
|
|
{
|
|
UNSERIALIZE_SCALAR(instCnt);
|
|
interrupts->unserialize(cp, section);
|
|
}
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
void
|
|
BaseCPU::traceFunctionsInternal(Addr pc)
|
|
{
|
|
if (!debugSymbolTable)
|
|
return;
|
|
|
|
// if pc enters different function, print new function symbol and
|
|
// update saved range. Otherwise do nothing.
|
|
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
|
|
string sym_str;
|
|
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
|
|
currentFunctionStart,
|
|
currentFunctionEnd);
|
|
|
|
if (!found) {
|
|
// no symbol found: use addr as label
|
|
sym_str = csprintf("0x%x", pc);
|
|
currentFunctionStart = pc;
|
|
currentFunctionEnd = pc + 1;
|
|
}
|
|
|
|
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
|
|
curTick - functionEntryTick, curTick, sym_str);
|
|
functionEntryTick = curTick;
|
|
}
|
|
}
|