gem5/src/arch/sparc/isa/decoder.isa
Ali Saidi cf0e202cba make m5 readfile work on solaris... we can have a solaris regression soon!
src/arch/sparc/isa/decoder.isa:
    add readfile and break to sparc decoder
src/arch/sparc/isa/operands.isa:
    fix O0-O5 operands registers
util/m5/Makefile.sparc:
    Make sparc makefile compile a 64bit binary
util/m5/m5.c:
    readfile was in here twice, once will be sufficient I think
util/m5/m5op_sparc.S:
    implement readfile and debugbreak

--HG--
extra : convert_revision : 139b3f480ee6342b37b5642e072c8486d91a3944
2007-02-24 22:05:01 -05:00

1501 lines
64 KiB
Plaintext

// Copyright (c) 2006-2007 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Ali Saidi
// Gabe Black
// Steve Reinhardt
////////////////////////////////////////////////////////////////////
//
// The actual decoder specification
//
decode OP default Unknown::unknown()
{
0x0: decode OP2
{
//Throw an illegal instruction acception
0x0: Trap::illtrap({{fault = new IllegalInstruction;}});
format BranchN
{
//bpcc
0x1: decode COND2
{
//Branch Always
0x8: decode A
{
0x0: bpa(19, {{
NNPC = xc->readPC() + disp;
}});
0x1: bpa(19, {{
NPC = xc->readPC() + disp;
NNPC = NPC + 4;
}}, ',a');
}
//Branch Never
0x0: decode A
{
0x0: bpn(19, {{
NNPC = NNPC;//Don't do anything
}});
0x1: bpn(19, {{
NNPC = NPC + 8;
NPC = NPC + 4;
}}, ',a');
}
default: decode BPCC
{
0x0: bpcci(19, {{
if(passesCondition(Ccr<3:0>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x2: bpccx(19, {{
if(passesCondition(Ccr<7:4>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
}
}
//bicc
0x2: decode COND2
{
//Branch Always
0x8: decode A
{
0x0: ba(22, {{
NNPC = xc->readPC() + disp;
}});
0x1: ba(22, {{
NPC = xc->readPC() + disp;
NNPC = NPC + 4;
}}, ',a');
}
//Branch Never
0x0: decode A
{
0x0: bn(22, {{
NNPC = NNPC;//Don't do anything
}});
0x1: bn(22, {{
NNPC = NPC + 8;
NPC = NPC + 4;
}}, ',a');
}
default: bicc(22, {{
if(passesCondition(Ccr<3:0>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
}
}
0x3: decode RCOND2
{
format BranchSplit
{
0x1: bpreq({{
if(Rs1.sdw == 0)
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x2: bprle({{
if(Rs1.sdw <= 0)
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x3: bprl({{
if(Rs1.sdw < 0)
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x5: bprne({{
if(Rs1.sdw != 0)
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x6: bprg({{
if(Rs1.sdw > 0)
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x7: bprge({{
if(Rs1.sdw >= 0)
NNPC = xc->readPC() + disp;
else
handle_annul
}});
}
}
//SETHI (or NOP if rd == 0 and imm == 0)
0x4: SetHi::sethi({{Rd.udw = imm;}});
//fbpfcc
0x5: decode COND2 {
format BranchN {
//Branch Always
0x8: decode A
{
0x0: fbpa(22, {{
NNPC = xc->readPC() + disp;
}});
0x1: fbpa(22, {{
NPC = xc->readPC() + disp;
NNPC = NPC + 4;
}}, ',a');
}
//Branch Never
0x0: decode A
{
0x0: fbpn(22, {{
NNPC = NNPC;//Don't do anything
}});
0x1: fbpn(22, {{
NNPC = NPC + 8;
NPC = NPC + 4;
}}, ',a');
}
default: decode BPCC {
0x0: fbpcc0(22, {{
if(passesFpCondition(Fsr<11:10>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x1: fbpcc1(22, {{
if(passesFpCondition(Fsr<33:32>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x2: fbpcc2(22, {{
if(passesFpCondition(Fsr<35:34>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
0x3: fbpcc3(22, {{
if(passesFpCondition(Fsr<37:36>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
}
}
}
//fbfcc
0x6: decode COND2 {
format BranchN {
//Branch Always
0x8: decode A
{
0x0: fba(22, {{
NNPC = xc->readPC() + disp;
}});
0x1: fba(22, {{
NPC = xc->readPC() + disp;
NNPC = NPC + 4;
}}, ',a');
}
//Branch Never
0x0: decode A
{
0x0: fbn(22, {{
NNPC = NNPC;//Don't do anything
}});
0x1: fbn(22, {{
NNPC = NPC + 8;
NPC = NPC + 4;
}}, ',a');
}
default: fbfcc(22, {{
if(passesFpCondition(Fsr<11:10>, COND2))
NNPC = xc->readPC() + disp;
else
handle_annul
}});
}
}
}
0x1: BranchN::call(30, {{
if (Pstate<3:>)
R15 = (xc->readPC())<31:0>;
else
R15 = xc->readPC();
NNPC = R15 + disp;
}});
0x2: decode OP3 {
format IntOp {
0x00: add({{Rd = Rs1.sdw + Rs2_or_imm13;}});
0x01: and({{Rd = Rs1.sdw & Rs2_or_imm13;}});
0x02: or({{Rd = Rs1.sdw | Rs2_or_imm13;}});
0x03: xor({{Rd = Rs1.sdw ^ Rs2_or_imm13;}});
0x04: sub({{Rd = Rs1.sdw - Rs2_or_imm13;}});
0x05: andn({{Rd = Rs1.sdw & ~Rs2_or_imm13;}});
0x06: orn({{Rd = Rs1.sdw | ~Rs2_or_imm13;}});
0x07: xnor({{Rd = ~(Rs1.sdw ^ Rs2_or_imm13);}});
0x08: addc({{Rd = Rs1.sdw + Rs2_or_imm13 + Ccr<0:0>;}});
0x09: mulx({{Rd = Rs1.sdw * Rs2_or_imm13;}});
0x0A: umul({{
Rd = Rs1.udw<31:0> * Rs2_or_imm13<31:0>;
Y = Rd<63:32>;
}});
0x0B: smul({{
Rd.sdw = sext<32>(Rs1.sdw<31:0>) * sext<32>(Rs2_or_imm13<31:0>);
Y = Rd.sdw<63:32>;
}});
0x0C: subc({{Rd.sdw = Rs1.sdw + (~Rs2_or_imm13) + 1 - Ccr<0:0>}});
0x0D: udivx({{
if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
else Rd.udw = Rs1.udw / Rs2_or_imm13;
}});
0x0E: udiv({{
if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
else
{
Rd.udw = ((Y << 32) | Rs1.udw<31:0>) / Rs2_or_imm13;
if(Rd.udw >> 32 != 0)
Rd.udw = 0xFFFFFFFF;
}
}});
0x0F: sdiv({{
if(Rs2_or_imm13.sdw == 0)
fault = new DivisionByZero;
else
{
Rd.udw = ((int64_t)((Y << 32) | Rs1.sdw<31:0>)) / Rs2_or_imm13.sdw;
if((int64_t)Rd.udw >= std::numeric_limits<int32_t>::max())
Rd.udw = 0x7FFFFFFF;
else if((int64_t)Rd.udw <= std::numeric_limits<int32_t>::min())
Rd.udw = ULL(0xFFFFFFFF80000000);
}
}});
}
format IntOpCc {
0x10: addcc({{
int64_t resTemp, val2 = Rs2_or_imm13;
Rd = resTemp = Rs1 + val2;}},
{{(Rs1<31:0> + val2<31:0>)<32:>}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{(Rs1<63:1> + val2<63:1> + (Rs1 & val2)<0:>)<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);
0x11: IntOpCcRes::andcc({{Rd = Rs1 & Rs2_or_imm13;}});
0x12: IntOpCcRes::orcc({{Rd = Rs1 | Rs2_or_imm13;}});
0x13: IntOpCcRes::xorcc({{Rd = Rs1 ^ Rs2_or_imm13;}});
0x14: subcc({{
int64_t val2 = Rs2_or_imm13;
Rd = Rs1 - val2;}},
{{(~(Rs1<31:0> + (~val2)<31:0> + 1))<32:>}},
{{(Rs1<31:> != val2<31:>) && (Rs1<31:> != Rd<31:>)}},
{{(~(Rs1<63:1> + (~val2)<63:1> +
(Rs1 | ~val2)<0:>))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != Rd<63:>}}
);
0x15: IntOpCcRes::andncc({{Rd = Rs1 & ~Rs2_or_imm13;}});
0x16: IntOpCcRes::orncc({{Rd = Rs1 | ~Rs2_or_imm13;}});
0x17: IntOpCcRes::xnorcc({{Rd = ~(Rs1 ^ Rs2_or_imm13);}});
0x18: addccc({{
int64_t resTemp, val2 = Rs2_or_imm13;
int64_t carryin = Ccr<0:0>;
Rd = resTemp = Rs1 + val2 + carryin;}},
{{(Rs1<31:0> + val2<31:0> + carryin)<32:>}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 & val2) | (~resTemp & (Rs1 | val2)))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);
0x1A: IntOpCcRes::umulcc({{
uint64_t resTemp;
Rd = resTemp = Rs1.udw<31:0> * Rs2_or_imm13.udw<31:0>;
Y = resTemp<63:32>;}});
0x1B: IntOpCcRes::smulcc({{
int64_t resTemp;
Rd = resTemp = sext<32>(Rs1.sdw<31:0>) * sext<32>(Rs2_or_imm13<31:0>);
Y = resTemp<63:32>;}});
0x1C: subccc({{
int64_t resTemp, val2 = Rs2_or_imm13;
int64_t carryin = Ccr<0:0>;
Rd = resTemp = Rs1 + ~val2 + 1 - carryin;}},
{{((~Rs1 & val2) | (resTemp & (~Rs1 | val2)))<31:>}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
{{((~Rs1 & val2) | (resTemp & (~Rs1 | val2)))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);
0x1D: IntOpCcRes::udivxcc({{
if(Rs2_or_imm13.udw == 0) fault = new DivisionByZero;
else Rd = Rs1.udw / Rs2_or_imm13.udw;}});
0x1E: udivcc({{
uint32_t resTemp, val2 = Rs2_or_imm13.udw;
int32_t overflow = 0;
if(val2 == 0) fault = new DivisionByZero;
else
{
resTemp = (uint64_t)((Y << 32) | Rs1.udw<31:0>) / val2;
overflow = (resTemp<63:32> != 0);
if(overflow) Rd = resTemp = 0xFFFFFFFF;
else Rd = resTemp;
} }},
{{0}},
{{overflow}},
{{0}},
{{0}}
);
0x1F: sdivcc({{
int64_t val2 = Rs2_or_imm13.sdw<31:0>;
bool overflow = false, underflow = false;
if(val2 == 0) fault = new DivisionByZero;
else
{
Rd = (int64_t)((Y << 32) | Rs1.sdw<31:0>) / val2;
overflow = ((int64_t)Rd >= std::numeric_limits<int32_t>::max());
underflow = ((int64_t)Rd <= std::numeric_limits<int32_t>::min());
if(overflow) Rd = 0x7FFFFFFF;
else if(underflow) Rd = ULL(0xFFFFFFFF80000000);
} }},
{{0}},
{{overflow || underflow}},
{{0}},
{{0}}
);
0x20: taddcc({{
int64_t resTemp, val2 = Rs2_or_imm13;
Rd = resTemp = Rs1 + val2;
int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{((Rs1<31:0> + val2<31:0>)<32:0>)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);
0x21: tsubcc({{
int64_t resTemp, val2 = Rs2_or_imm13;
Rd = resTemp = Rs1 + val2;
int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{(Rs1<31:0> + val2<31:0>)<32:0>}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);
0x22: taddcctv({{
int64_t val2 = Rs2_or_imm13;
Rd = Rs1 + val2;
int32_t overflow = Rs1<1:0> || val2<1:0> ||
(Rs1<31:> == val2<31:> && val2<31:> != Rd<31:>);
if(overflow) fault = new TagOverflow;}},
{{((Rs1<31:0> + val2<31:0>)<32:0>)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != Rd<63:>}}
);
0x23: tsubcctv({{
int64_t resTemp, val2 = Rs2_or_imm13;
Rd = resTemp = Rs1 + val2;
int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
if(overflow) fault = new TagOverflow;}},
{{((Rs1<31:0> + val2<31:0>)<32:0>)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);
0x24: mulscc({{
int64_t resTemp, multiplicand = Rs2_or_imm13;
int32_t multiplier = Rs1<31:0>;
int32_t savedLSB = Rs1<0:>;
multiplier = multiplier<31:1> |
((Ccr<3:3> ^ Ccr<1:1>) << 32);
if(!Y<0:>)
multiplicand = 0;
Rd = resTemp = multiplicand + multiplier;
Y = Y<31:1> | (savedLSB << 31);}},
{{((multiplicand<31:0> + multiplier<31:0>)<32:0>)}},
{{multiplicand<31:> == multiplier<31:> && multiplier<31:> != resTemp<31:>}},
{{((multiplicand >> 1) + (multiplier >> 1) + (multiplicand & multiplier & 0x1))<63:>}},
{{multiplicand<63:> == multiplier<63:> && multiplier<63:> != resTemp<63:>}}
);
}
format IntOp
{
0x25: decode X {
0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}});
0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}});
}
0x26: decode X {
0x0: srl({{Rd = Rs1.uw >> (I ? SHCNT32 : Rs2<4:0>);}});
0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}});
}
0x27: decode X {
0x0: sra({{Rd = Rs1.sw >> (I ? SHCNT32 : Rs2<4:0>);}});
0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}});
}
0x28: decode RS1 {
0x00: NoPriv::rdy({{Rd = Y<31:0>;}});
//1 should cause an illegal instruction exception
0x02: NoPriv::rdccr({{Rd = Ccr;}});
0x03: NoPriv::rdasi({{Rd = Asi;}});
0x04: PrivCheck::rdtick({{Rd = Tick;}}, {{Tick<63:>}});
0x05: NoPriv::rdpc({{
if(Pstate<3:>)
Rd = (xc->readPC())<31:0>;
else
Rd = xc->readPC();}});
0x06: NoPriv::rdfprs({{
//Wait for all fpops to finish.
Rd = Fprs;
}});
//7-14 should cause an illegal instruction exception
0x0F: decode I {
0x0: Nop::stbar({{/*stuff*/}}, IsWriteBarrier, MemWriteOp);
0x1: Nop::membar({{/*stuff*/}}, IsMemBarrier, MemReadOp);
}
0x10: Priv::rdpcr({{Rd = Pcr;}});
0x11: PrivCheck::rdpic({{Rd = Pic;}}, {{Pcr<0:>}});
//0x12 should cause an illegal instruction exception
0x13: NoPriv::rdgsr({{
fault = checkFpEnableFault(xc);
if (fault)
return fault;
Rd = Gsr;
}});
//0x14-0x15 should cause an illegal instruction exception
0x16: Priv::rdsoftint({{Rd = Softint;}});
0x17: Priv::rdtick_cmpr({{Rd = TickCmpr;}});
0x18: PrivCheck::rdstick({{Rd = Stick}}, {{Stick<63:>}});
0x19: Priv::rdstick_cmpr({{Rd = StickCmpr;}});
0x1A: Priv::rdstrand_sts_reg({{
if(Pstate<2:> && !Hpstate<2:>)
Rd = StrandStsReg<0:>;
else
Rd = StrandStsReg;
}});
//0x1A is supposed to be reserved, but it reads the strand
//status register.
//0x1B-0x1F should cause an illegal instruction exception
}
0x29: decode RS1 {
0x00: HPriv::rdhprhpstate({{Rd = Hpstate;}});
0x01: HPriv::rdhprhtstate({{
if(Tl == 0)
return new IllegalInstruction;
Rd = Htstate;
}});
//0x02 should cause an illegal instruction exception
0x03: HPriv::rdhprhintp({{Rd = Hintp;}});
//0x04 should cause an illegal instruction exception
0x05: HPriv::rdhprhtba({{Rd = Htba;}});
0x06: HPriv::rdhprhver({{Rd = Hver;}});
//0x07-0x1E should cause an illegal instruction exception
0x1F: HPriv::rdhprhstick_cmpr({{Rd = HstickCmpr;}});
}
0x2A: decode RS1 {
0x00: Priv::rdprtpc({{
if(Tl == 0)
return new IllegalInstruction;
Rd = Tpc;
}});
0x01: Priv::rdprtnpc({{
if(Tl == 0)
return new IllegalInstruction;
Rd = Tnpc;
}});
0x02: Priv::rdprtstate({{
if(Tl == 0)
return new IllegalInstruction;
Rd = Tstate;
}});
0x03: Priv::rdprtt({{
if(Tl == 0)
return new IllegalInstruction;
Rd = Tt;
}});
0x04: Priv::rdprtick({{Rd = Tick;}});
0x05: Priv::rdprtba({{Rd = Tba;}});
0x06: Priv::rdprpstate({{Rd = Pstate;}});
0x07: Priv::rdprtl({{Rd = Tl;}});
0x08: Priv::rdprpil({{Rd = Pil;}});
0x09: Priv::rdprcwp({{Rd = Cwp;}});
0x0A: Priv::rdprcansave({{Rd = Cansave;}});
0x0B: Priv::rdprcanrestore({{Rd = Canrestore;}});
0x0C: Priv::rdprcleanwin({{Rd = Cleanwin;}});
0x0D: Priv::rdprotherwin({{Rd = Otherwin;}});
0x0E: Priv::rdprwstate({{Rd = Wstate;}});
//0x0F should cause an illegal instruction exception
0x10: Priv::rdprgl({{Rd = Gl;}});
//0x11-0x1F should cause an illegal instruction exception
}
0x2B: BasicOperate::flushw({{
if(NWindows - 2 - Cansave != 0)
{
if(Otherwin)
fault = new SpillNOther(4*Wstate<5:3>);
else
fault = new SpillNNormal(4*Wstate<2:0>);
}
}});
0x2C: decode MOVCC3
{
0x0: Trap::movccfcc({{fault = new FpDisabled;}});
0x1: decode CC
{
0x0: movcci({{
if(passesCondition(Ccr<3:0>, COND4))
Rd = Rs2_or_imm11;
else
Rd = Rd;
}});
0x2: movccx({{
if(passesCondition(Ccr<7:4>, COND4))
Rd = Rs2_or_imm11;
else
Rd = Rd;
}});
}
}
0x2D: sdivx({{
if(Rs2_or_imm13.sdw == 0) fault = new DivisionByZero;
else Rd.sdw = Rs1.sdw / Rs2_or_imm13.sdw;
}});
0x2E: Trap::popc({{fault = new IllegalInstruction;}});
0x2F: decode RCOND3
{
0x1: movreq({{Rd = (Rs1.sdw == 0) ? Rs2_or_imm10 : Rd;}});
0x2: movrle({{Rd = (Rs1.sdw <= 0) ? Rs2_or_imm10 : Rd;}});
0x3: movrl({{Rd = (Rs1.sdw < 0) ? Rs2_or_imm10 : Rd;}});
0x5: movrne({{Rd = (Rs1.sdw != 0) ? Rs2_or_imm10 : Rd;}});
0x6: movrg({{Rd = (Rs1.sdw > 0) ? Rs2_or_imm10 : Rd;}});
0x7: movrge({{Rd = (Rs1.sdw >= 0) ? Rs2_or_imm10 : Rd;}});
}
0x30: decode RD {
0x00: NoPriv::wry({{Y = (Rs1 ^ Rs2_or_imm13)<31:0>;}});
//0x01 should cause an illegal instruction exception
0x02: NoPriv::wrccr({{Ccr = Rs1 ^ Rs2_or_imm13;}});
0x03: NoPriv::wrasi({{Asi = Rs1 ^ Rs2_or_imm13;}});
//0x04-0x05 should cause an illegal instruction exception
0x06: NoPriv::wrfprs({{Fprs = Rs1 ^ Rs2_or_imm13;}});
//0x07-0x0E should cause an illegal instruction exception
0x0F: Trap::softreset({{fault = new SoftwareInitiatedReset;}});
0x10: Priv::wrpcr({{Pcr = Rs1 ^ Rs2_or_imm13;}});
0x11: PrivCheck::wrpic({{Pic = Rs1 ^ Rs2_or_imm13;}}, {{Pcr<0:>}});
//0x12 should cause an illegal instruction exception
0x13: NoPriv::wrgsr({{
if(Fprs<2:> == 0 || Pstate<4:> == 0)
return new FpDisabled;
Gsr = Rs1 ^ Rs2_or_imm13;
}});
0x14: Priv::wrsoftint_set({{SoftintSet = Rs1 ^ Rs2_or_imm13;}});
0x15: Priv::wrsoftint_clr({{SoftintClr = Rs1 ^ Rs2_or_imm13;}});
0x16: Priv::wrsoftint({{Softint = Rs1 ^ Rs2_or_imm13;}});
0x17: Priv::wrtick_cmpr({{TickCmpr = Rs1 ^ Rs2_or_imm13;}});
0x18: NoPriv::wrstick({{
if(!Hpstate<2:>)
return new IllegalInstruction;
Stick = Rs1 ^ Rs2_or_imm13;
}});
0x19: Priv::wrstick_cmpr({{StickCmpr = Rs1 ^ Rs2_or_imm13;}});
0x1A: Priv::wrstrand_sts_reg({{
if(Pstate<2:> && !Hpstate<2:>)
StrandStsReg = StrandStsReg<63:1> |
(Rs1 ^ Rs2_or_imm13)<0:>;
else
StrandStsReg = Rs1 ^ Rs2_or_imm13;
}});
//0x1A is supposed to be reserved, but it writes the strand
//status register.
//0x1B-0x1F should cause an illegal instruction exception
}
0x31: decode FCN {
0x0: Priv::saved({{
assert(Cansave < NWindows - 2);
assert(Otherwin || Canrestore);
Cansave = Cansave + 1;
if(Otherwin == 0)
Canrestore = Canrestore - 1;
else
Otherwin = Otherwin - 1;
}});
0x1: Priv::restored({{
assert(Cansave || Otherwin);
assert(Canrestore < NWindows - 2);
Canrestore = Canrestore + 1;
if(Otherwin == 0)
Cansave = Cansave - 1;
else
Otherwin = Otherwin - 1;
if(Cleanwin < NWindows - 1)
Cleanwin = Cleanwin + 1;
}});
}
0x32: decode RD {
0x00: Priv::wrprtpc({{
if(Tl == 0)
return new IllegalInstruction;
else
Tpc = Rs1 ^ Rs2_or_imm13;
}});
0x01: Priv::wrprtnpc({{
if(Tl == 0)
return new IllegalInstruction;
else
Tnpc = Rs1 ^ Rs2_or_imm13;
}});
0x02: Priv::wrprtstate({{
if(Tl == 0)
return new IllegalInstruction;
else
Tstate = Rs1 ^ Rs2_or_imm13;
}});
0x03: Priv::wrprtt({{
if(Tl == 0)
return new IllegalInstruction;
else
Tt = Rs1 ^ Rs2_or_imm13;
}});
0x04: HPriv::wrprtick({{Tick = Rs1 ^ Rs2_or_imm13;}});
0x05: Priv::wrprtba({{Tba = Rs1 ^ Rs2_or_imm13;}});
0x06: Priv::wrprpstate({{Pstate = Rs1 ^ Rs2_or_imm13;}});
0x07: Priv::wrprtl({{
if(Pstate<2:> && !Hpstate<2:>)
Tl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxPTL);
else
Tl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxTL);
}});
0x08: Priv::wrprpil({{Pil = Rs1 ^ Rs2_or_imm13;}});
0x09: Priv::wrprcwp({{Cwp = Rs1 ^ Rs2_or_imm13;}});
0x0A: Priv::wrprcansave({{Cansave = Rs1 ^ Rs2_or_imm13;}});
0x0B: Priv::wrprcanrestore({{Canrestore = Rs1 ^ Rs2_or_imm13;}});
0x0C: Priv::wrprcleanwin({{Cleanwin = Rs1 ^ Rs2_or_imm13;}});
0x0D: Priv::wrprotherwin({{Otherwin = Rs1 ^ Rs2_or_imm13;}});
0x0E: Priv::wrprwstate({{Wstate = Rs1 ^ Rs2_or_imm13;}});
//0x0F should cause an illegal instruction exception
0x10: Priv::wrprgl({{
if(Pstate<2:> && !Hpstate<2:>)
Gl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxPGL);
else
Gl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxGL);
}});
//0x11-0x1F should cause an illegal instruction exception
}
0x33: decode RD {
0x00: HPriv::wrhprhpstate({{Hpstate = Rs1 ^ Rs2_or_imm13;}});
0x01: HPriv::wrhprhtstate({{
if(Tl == 0)
return new IllegalInstruction;
Htstate = Rs1 ^ Rs2_or_imm13;
}});
//0x02 should cause an illegal instruction exception
0x03: HPriv::wrhprhintp({{Hintp = Rs1 ^ Rs2_or_imm13;}});
//0x04 should cause an illegal instruction exception
0x05: HPriv::wrhprhtba({{Htba = Rs1 ^ Rs2_or_imm13;}});
//0x06-0x01D should cause an illegal instruction exception
0x1F: HPriv::wrhprhstick_cmpr({{HstickCmpr = Rs1 ^ Rs2_or_imm13;}});
}
0x34: decode OPF{
format FpBasic{
0x01: fmovs({{
Frds.uw = Frs2s.uw;
//fsr.ftt = fsr.cexc = 0
Fsr &= ~(7 << 14);
Fsr &= ~(0x1F);
}});
0x02: fmovd({{
Frd.udw = Frs2.udw;
//fsr.ftt = fsr.cexc = 0
Fsr &= ~(7 << 14);
Fsr &= ~(0x1F);
}});
0x03: FpUnimpl::fmovq();
0x05: fnegs({{
Frds.uw = Frs2s.uw ^ (1UL << 31);
//fsr.ftt = fsr.cexc = 0
Fsr &= ~(7 << 14);
Fsr &= ~(0x1F);
}});
0x06: fnegd({{
Frd.udw = Frs2.udw ^ (1ULL << 63);
//fsr.ftt = fsr.cexc = 0
Fsr &= ~(7 << 14);
Fsr &= ~(0x1F);
}});
0x07: FpUnimpl::fnegq();
0x09: fabss({{
Frds.uw = ((1UL << 31) - 1) & Frs2s.uw;
//fsr.ftt = fsr.cexc = 0
Fsr &= ~(7 << 14);
Fsr &= ~(0x1F);
}});
0x0A: fabsd({{
Frd.udw = ((1ULL << 63) - 1) & Frs2.udw;
//fsr.ftt = fsr.cexc = 0
Fsr &= ~(7 << 14);
Fsr &= ~(0x1F);
}});
0x0B: FpUnimpl::fabsq();
0x29: fsqrts({{Frds.sf = std::sqrt(Frs2s.sf);}});
0x2A: fsqrtd({{Frd.df = std::sqrt(Frs2.df);}});
0x2B: FpUnimpl::fsqrtq();
0x41: fadds({{Frds.sf = Frs1s.sf + Frs2s.sf;}});
0x42: faddd({{Frd.df = Frs1.df + Frs2.df;}});
0x43: FpUnimpl::faddq();
0x45: fsubs({{Frds.sf = Frs1s.sf - Frs2s.sf;}});
0x46: fsubd({{Frd.df = Frs1.df - Frs2.df; }});
0x47: FpUnimpl::fsubq();
0x49: fmuls({{Frds.sf = Frs1s.sf * Frs2s.sf;}});
0x4A: fmuld({{Frd.df = Frs1.df * Frs2.df;}});
0x4B: FpUnimpl::fmulq();
0x4D: fdivs({{Frds.sf = Frs1s.sf / Frs2s.sf;}});
0x4E: fdivd({{Frd.df = Frs1.df / Frs2.df;}});
0x4F: FpUnimpl::fdivq();
0x69: fsmuld({{Frd.df = Frs1s.sf * Frs2s.sf;}});
0x6E: FpUnimpl::fdmulq();
0x81: fstox({{
Frd.sdw = static_cast<int64_t>(Frs2s.sf);
}});
0x82: fdtox({{
Frd.sdw = static_cast<int64_t>(Frs2.df);
}});
0x83: FpUnimpl::fqtox();
0x84: fxtos({{
Frds.sf = static_cast<float>(Frs2.sdw);
}});
0x88: fxtod({{
Frd.df = static_cast<double>(Frs2.sdw);
}});
0x8C: FpUnimpl::fxtoq();
0xC4: fitos({{
Frds.sf = static_cast<float>(Frs2s.sw);
}});
0xC6: fdtos({{Frds.sf = Frs2.df;}});
0xC7: FpUnimpl::fqtos();
0xC8: fitod({{
Frd.df = static_cast<double>(Frs2s.sw);
}});
0xC9: fstod({{Frd.df = Frs2s.sf;}});
0xCB: FpUnimpl::fqtod();
0xCC: FpUnimpl::fitoq();
0xCD: FpUnimpl::fstoq();
0xCE: FpUnimpl::fdtoq();
0xD1: fstoi({{
Frds.sw = static_cast<int32_t>(Frs2s.sf);
float t = Frds.sw;
if (t != Frs2s.sf)
Fsr = insertBits(Fsr, 4,0, 0x01);
}});
0xD2: fdtoi({{
Frds.sw = static_cast<int32_t>(Frs2.df);
double t = Frds.sw;
if (t != Frs2.df)
Fsr = insertBits(Fsr, 4,0, 0x01);
}});
0xD3: FpUnimpl::fqtoi();
default: FailUnimpl::fpop1();
}
}
0x35: decode OPF{
format FpBasic{
0x51: fcmps({{
uint8_t fcc;
if(isnan(Frs1s) || isnan(Frs2s))
fcc = 3;
else if(Frs1s < Frs2s)
fcc = 1;
else if(Frs1s > Frs2s)
fcc = 2;
else
fcc = 0;
uint8_t firstbit = 10;
if(FCMPCC)
firstbit = FCMPCC * 2 + 30;
Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc);
}});
0x52: fcmpd({{
uint8_t fcc;
if(isnan(Frs1) || isnan(Frs2))
fcc = 3;
else if(Frs1 < Frs2)
fcc = 1;
else if(Frs1 > Frs2)
fcc = 2;
else
fcc = 0;
uint8_t firstbit = 10;
if(FCMPCC)
firstbit = FCMPCC * 2 + 30;
Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc);
}});
0x53: FpUnimpl::fcmpq();
0x55: fcmpes({{
uint8_t fcc = 0;
if(isnan(Frs1s) || isnan(Frs2s))
fault = new FpExceptionIEEE754;
if(Frs1s < Frs2s)
fcc = 1;
else if(Frs1s > Frs2s)
fcc = 2;
uint8_t firstbit = 10;
if(FCMPCC)
firstbit = FCMPCC * 2 + 30;
Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc);
}});
0x56: fcmped({{
uint8_t fcc = 0;
if(isnan(Frs1) || isnan(Frs2))
fault = new FpExceptionIEEE754;
if(Frs1 < Frs2)
fcc = 1;
else if(Frs1 > Frs2)
fcc = 2;
uint8_t firstbit = 10;
if(FCMPCC)
firstbit = FCMPCC * 2 + 30;
Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc);
}});
0x57: FpUnimpl::fcmpeq();
default: FailUnimpl::fpop2();
}
}
//This used to be just impdep1, but now it's a whole bunch
//of instructions
0x36: decode OPF{
0x00: FailUnimpl::edge8();
0x01: FailUnimpl::edge8n();
0x02: FailUnimpl::edge8l();
0x03: FailUnimpl::edge8ln();
0x04: FailUnimpl::edge16();
0x05: FailUnimpl::edge16n();
0x06: FailUnimpl::edge16l();
0x07: FailUnimpl::edge16ln();
0x08: FailUnimpl::edge32();
0x09: FailUnimpl::edge32n();
0x0A: FailUnimpl::edge32l();
0x0B: FailUnimpl::edge32ln();
0x10: FailUnimpl::array8();
0x12: FailUnimpl::array16();
0x14: FailUnimpl::array32();
0x18: BasicOperate::alignaddr({{
uint64_t sum = Rs1 + Rs2;
Rd = sum & ~7;
Gsr = (Gsr & ~7) | (sum & 7);
}});
0x19: FailUnimpl::bmask();
0x1A: BasicOperate::alignaddresslittle({{
uint64_t sum = Rs1 + Rs2;
Rd = sum & ~7;
Gsr = (Gsr & ~7) | ((~sum + 1) & 7);
}});
0x20: FailUnimpl::fcmple16();
0x22: FailUnimpl::fcmpne16();
0x24: FailUnimpl::fcmple32();
0x26: FailUnimpl::fcmpne32();
0x28: FailUnimpl::fcmpgt16();
0x2A: FailUnimpl::fcmpeq16();
0x2C: FailUnimpl::fcmpgt32();
0x2E: FailUnimpl::fcmpeq32();
0x31: FailUnimpl::fmul8x16();
0x33: FailUnimpl::fmul8x16au();
0x35: FailUnimpl::fmul8x16al();
0x36: FailUnimpl::fmul8sux16();
0x37: FailUnimpl::fmul8ulx16();
0x38: FailUnimpl::fmuld8sux16();
0x39: FailUnimpl::fmuld8ulx16();
0x3A: Trap::fpack32({{fault = new IllegalInstruction;}});
0x3B: Trap::fpack16({{fault = new IllegalInstruction;}});
0x3D: Trap::fpackfix({{fault = new IllegalInstruction;}});
0x3E: Trap::pdist({{fault = new IllegalInstruction;}});
0x48: BasicOperate::faligndata({{
uint64_t msbX = Frs1.udw;
uint64_t lsbX = Frs2.udw;
//Some special cases need to be split out, first
//because they're the most likely to be used, and
//second because otherwise, we end up shifting by
//greater than the width of the type being shifted,
//namely 64, which produces undefined results according
//to the C standard.
switch(Gsr<2:0>)
{
case 0:
Frd.udw = msbX;
break;
case 8:
Frd.udw = lsbX;
break;
default:
uint64_t msbShift = Gsr<2:0> * 8;
uint64_t lsbShift = (8 - Gsr<2:0>) * 8;
uint64_t msbMask = ((uint64_t)(-1)) >> msbShift;
uint64_t lsbMask = ((uint64_t)(-1)) << lsbShift;
Frd.udw = ((msbX & msbMask) << msbShift) |
((lsbX & lsbMask) >> lsbShift);
}
}});
0x4B: Trap::fpmerge({{fault = new IllegalInstruction;}});
0x4C: FailUnimpl::bshuffle();
0x4D: FailUnimpl::fexpand();
0x50: FailUnimpl::fpadd16();
0x51: FailUnimpl::fpadd16s();
0x52: FailUnimpl::fpadd32();
0x53: FailUnimpl::fpadd32s();
0x54: FailUnimpl::fpsub16();
0x55: FailUnimpl::fpsub16s();
0x56: FailUnimpl::fpsub32();
0x57: FailUnimpl::fpsub32s();
0x60: FpBasic::fzero({{Frd.df = 0;}});
0x61: FpBasic::fzeros({{Frds.sf = 0;}});
0x62: FailUnimpl::fnor();
0x63: FailUnimpl::fnors();
0x64: FailUnimpl::fandnot2();
0x65: FailUnimpl::fandnot2s();
0x66: FpBasic::fnot2({{
Frd.df = (double)(~((uint64_t)Frs2.df));
}});
0x67: FpBasic::fnot2s({{
Frds.sf = (float)(~((uint32_t)Frs2s.sf));
}});
0x68: FailUnimpl::fandnot1();
0x69: FailUnimpl::fandnot1s();
0x6A: FpBasic::fnot1({{
Frd.df = (double)(~((uint64_t)Frs1.df));
}});
0x6B: FpBasic::fnot1s({{
Frds.sf = (float)(~((uint32_t)Frs1s.sf));
}});
0x6C: FailUnimpl::fxor();
0x6D: FailUnimpl::fxors();
0x6E: FailUnimpl::fnand();
0x6F: FailUnimpl::fnands();
0x70: FailUnimpl::fand();
0x71: FailUnimpl::fands();
0x72: FailUnimpl::fxnor();
0x73: FailUnimpl::fxnors();
0x74: FpBasic::fsrc1({{Frd.udw = Frs1.udw;}});
0x75: FpBasic::fsrc1s({{Frds.uw = Frs1s.uw;}});
0x76: FailUnimpl::fornot2();
0x77: FailUnimpl::fornot2s();
0x78: FpBasic::fsrc2({{Frd.udw = Frs2.udw;}});
0x79: FpBasic::fsrc2s({{Frds.uw = Frs2s.uw;}});
0x7A: FailUnimpl::fornot1();
0x7B: FailUnimpl::fornot1s();
0x7C: FailUnimpl::for();
0x7D: FailUnimpl::fors();
0x7E: FpBasic::fone({{Frd.udw = std::numeric_limits<uint64_t>::max();}});
0x7F: FpBasic::fones({{Frds.uw = std::numeric_limits<uint32_t>::max();}});
0x80: Trap::shutdown({{fault = new IllegalInstruction;}});
0x81: FailUnimpl::siam();
}
// M5 special opcodes use the reserved IMPDEP2A opcode space
0x37: decode M5FUNC {
// we have 7 bits of space here to play with...
0x21: m5exit({{PseudoInst::m5exit(xc->tcBase(), O0);
}}, No_OpClass, IsNonSpeculative);
0x50: m5readfile({{
O0 = PseudoInst::readfile(xc->tcBase(), O0, O1, O2);
}}, IsNonSpeculative);
0x51: m5break({{PseudoInst::debugbreak(xc->tcBase());
}}, IsNonSpeculative);
0x54: m5panic({{
panic("M5 panic instruction called at pc=%#x.", xc->readPC());
}}, No_OpClass, IsNonSpeculative);
}
0x38: Branch::jmpl({{
Addr target = Rs1 + Rs2_or_imm13;
if(target & 0x3)
fault = new MemAddressNotAligned;
else
{
if (Pstate<3:>)
Rd = (xc->readPC())<31:0>;
else
Rd = xc->readPC();
NNPC = target;
}
}});
0x39: Branch::return({{
Addr target = Rs1 + Rs2_or_imm13;
if(fault == NoFault)
{
//Check for fills which are higher priority than alignment
//faults.
if(Canrestore == 0)
{
if(Otherwin)
fault = new FillNOther(4*Wstate<5:3>);
else
fault = new FillNNormal(4*Wstate<2:0>);
}
//Check for alignment faults
else if(target & 0x3)
fault = new MemAddressNotAligned;
else
{
NNPC = target;
Cwp = (Cwp - 1 + NWindows) % NWindows;
Cansave = Cansave + 1;
Canrestore = Canrestore - 1;
}
}
}});
0x3A: decode CC
{
0x0: Trap::tcci({{
if(passesCondition(Ccr<3:0>, COND2))
{
#if FULL_SYSTEM
int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
fault = new TrapInstruction(lTrapNum);
#else
DPRINTF(Sparc, "The syscall number is %d\n", R1);
xc->syscall(R1);
#endif
}
}}, IsSerializeAfter, IsNonSpeculative);
0x2: Trap::tccx({{
if(passesCondition(Ccr<7:4>, COND2))
{
#if FULL_SYSTEM
int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
fault = new TrapInstruction(lTrapNum);
#else
DPRINTF(Sparc, "The syscall number is %d\n", R1);
xc->syscall(R1);
#endif
}
}}, IsSerializeAfter, IsNonSpeculative);
}
0x3B: Nop::flush({{/*Instruction memory flush*/}}, IsWriteBarrier,
MemWriteOp);
0x3C: save({{
if(Cansave == 0)
{
if(Otherwin)
fault = new SpillNOther(4*Wstate<5:3>);
else
fault = new SpillNNormal(4*Wstate<2:0>);
}
else if(Cleanwin - Canrestore == 0)
{
fault = new CleanWindow;
}
else
{
Cwp = (Cwp + 1) % NWindows;
Rd_next = Rs1 + Rs2_or_imm13;
Cansave = Cansave - 1;
Canrestore = Canrestore + 1;
}
}});
0x3D: restore({{
if(Canrestore == 0)
{
if(Otherwin)
fault = new FillNOther(4*Wstate<5:3>);
else
fault = new FillNNormal(4*Wstate<2:0>);
}
else
{
Cwp = (Cwp - 1 + NWindows) % NWindows;
Rd_prev = Rs1 + Rs2_or_imm13;
Cansave = Cansave + 1;
Canrestore = Canrestore - 1;
}
}});
0x3E: decode FCN {
0x0: Priv::done({{
if(Tl == 0)
return new IllegalInstruction;
Cwp = Tstate<4:0>;
Pstate = Tstate<20:8>;
Asi = Tstate<31:24>;
Ccr = Tstate<39:32>;
Gl = Tstate<42:40>;
Hpstate = Htstate;
NPC = Tnpc;
NNPC = Tnpc + 4;
Tl = Tl - 1;
}});
0x1: Priv::retry({{
if(Tl == 0)
return new IllegalInstruction;
Cwp = Tstate<4:0>;
Pstate = Tstate<20:8>;
Asi = Tstate<31:24>;
Ccr = Tstate<39:32>;
Gl = Tstate<42:40>;
Hpstate = Htstate;
NPC = Tpc;
NNPC = Tnpc;
Tl = Tl - 1;
}});
}
}
}
0x3: decode OP3 {
format Load {
0x00: lduw({{Rd = Mem.uw;}});
0x01: ldub({{Rd = Mem.ub;}});
0x02: lduh({{Rd = Mem.uhw;}});
0x03: ldtw({{
uint64_t val = Mem.udw;
RdLow = val<31:0>;
RdHigh = val<63:32>;
}});
}
format Store {
0x04: stw({{Mem.uw = Rd.sw;}});
0x05: stb({{Mem.ub = Rd.sb;}});
0x06: sth({{Mem.uhw = Rd.shw;}});
0x07: sttw({{Mem.udw = RdLow<31:0> | (RdHigh<31:0> << 32);}});
}
format Load {
0x08: ldsw({{Rd = (int32_t)Mem.sw;}});
0x09: ldsb({{Rd = (int8_t)Mem.sb;}});
0x0A: ldsh({{Rd = (int16_t)Mem.shw;}});
0x0B: ldx({{Rd = (int64_t)Mem.sdw;}});
}
0x0D: Swap::ldstub({{Mem.ub = 0xFF;}},
{{
uint8_t tmp = mem_data;
Rd.ub = tmp;
}}, MEM_SWAP);
0x0E: Store::stx({{Mem.udw = Rd}});
0x0F: Swap::swap({{Mem.uw = Rd.uw}},
{{
uint32_t tmp = mem_data;
Rd.uw = tmp;
}}, MEM_SWAP);
format LoadAlt {
0x10: lduwa({{Rd = Mem.uw;}}, {{EXT_ASI}});
0x11: lduba({{Rd = Mem.ub;}}, {{EXT_ASI}});
0x12: lduha({{Rd = Mem.uhw;}}, {{EXT_ASI}});
0x13: decode EXT_ASI {
//ASI_LDTD_AIUP
0x22: TwinLoad::ldtx_aiup(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTD_AIUS
0x23: TwinLoad::ldtx_aius(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_QUAD_LDD
0x24: TwinLoad::ldtx_quad_ldd(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_REAL
0x26: TwinLoad::ldtx_real(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_N
0x27: TwinLoad::ldtx_n(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_AIUP_L
0x2A: TwinLoad::ldtx_aiup_l(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_AIUS_L
0x2B: TwinLoad::ldtx_aius_l(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_L
0x2C: TwinLoad::ldtx_l(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_REAL_L
0x2E: TwinLoad::ldtx_real_l(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_N_L
0x2F: TwinLoad::ldtx_n_l(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_P
0xE2: TwinLoad::ldtx_p(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_S
0xE3: TwinLoad::ldtx_s(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_PL
0xEA: TwinLoad::ldtx_pl(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_SL
0xEB: TwinLoad::ldtx_sl(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
default: ldtwa({{
uint64_t val = Mem.udw;
RdLow = val<31:0>;
RdHigh = val<63:32>;
}}, {{EXT_ASI}});
}
}
format StoreAlt {
0x14: stwa({{Mem.uw = Rd;}}, {{EXT_ASI}});
0x15: stba({{Mem.ub = Rd;}}, {{EXT_ASI}});
0x16: stha({{Mem.uhw = Rd;}}, {{EXT_ASI}});
0x17: sttwa({{Mem.udw = RdLow<31:0> | RdHigh<31:0> << 32;}}, {{EXT_ASI}});
}
format LoadAlt {
0x18: ldswa({{Rd = (int32_t)Mem.sw;}}, {{EXT_ASI}});
0x19: ldsba({{Rd = (int8_t)Mem.sb;}}, {{EXT_ASI}});
0x1A: ldsha({{Rd = (int16_t)Mem.shw;}}, {{EXT_ASI}});
0x1B: ldxa({{Rd = (int64_t)Mem.sdw;}}, {{EXT_ASI}});
}
0x1D: SwapAlt::ldstuba({{Mem.ub = 0xFF;}},
{{
uint8_t tmp = mem_data;
Rd.ub = tmp;
}}, {{EXT_ASI}}, MEM_SWAP);
0x1E: StoreAlt::stxa({{Mem.udw = Rd}}, {{EXT_ASI}});
0x1F: SwapAlt::swapa({{Mem.uw = Rd.uw}},
{{
uint32_t tmp = mem_data;
Rd.uw = tmp;
}}, {{EXT_ASI}}, MEM_SWAP);
format Trap {
0x20: Load::ldf({{Frds.uw = Mem.uw;}});
0x21: decode RD {
0x0: Load::ldfsr({{fault = checkFpEnableFault(xc);
if (fault)
return fault;
Fsr = Mem.uw | Fsr<63:32>;}});
0x1: Load::ldxfsr({{fault = checkFpEnableFault(xc);
if (fault)
return fault;
Fsr = Mem.udw;}});
default: FailUnimpl::ldfsrOther();
}
0x22: ldqf({{fault = new FpDisabled;}});
0x23: Load::lddf({{Frd.udw = Mem.udw;}});
0x24: Store::stf({{Mem.uw = Frds.uw;}});
0x25: decode RD {
0x0: Store::stfsr({{fault = checkFpEnableFault(xc);
if (fault)
return fault;
Mem.uw = Fsr<31:0>;
Fsr = insertBits(Fsr,16,14,0);}});
0x1: Store::stxfsr({{fault = checkFpEnableFault(xc);
if (fault)
return fault;
Mem.udw = Fsr;
Fsr = insertBits(Fsr,16,14,0);}});
default: FailUnimpl::stfsrOther();
}
0x26: stqf({{fault = new FpDisabled;}});
0x27: Store::stdf({{Mem.udw = Frd.udw;}});
0x2D: Nop::prefetch({{ }});
0x30: LoadAlt::ldfa({{Frds.uw = Mem.uw;}}, {{EXT_ASI}});
0x32: ldqfa({{fault = new FpDisabled;}});
format LoadAlt {
0x33: decode EXT_ASI {
//ASI_NUCLEUS
0x04: FailUnimpl::lddfa_n();
//ASI_NUCLEUS_LITTLE
0x0C: FailUnimpl::lddfa_nl();
//ASI_AS_IF_USER_PRIMARY
0x10: FailUnimpl::lddfa_aiup();
//ASI_AS_IF_USER_PRIMARY_LITTLE
0x18: FailUnimpl::lddfa_aiupl();
//ASI_AS_IF_USER_SECONDARY
0x11: FailUnimpl::lddfa_aius();
//ASI_AS_IF_USER_SECONDARY_LITTLE
0x19: FailUnimpl::lddfa_aiusl();
//ASI_REAL
0x14: FailUnimpl::lddfa_real();
//ASI_REAL_LITTLE
0x1C: FailUnimpl::lddfa_real_l();
//ASI_REAL_IO
0x15: FailUnimpl::lddfa_real_io();
//ASI_REAL_IO_LITTLE
0x1D: FailUnimpl::lddfa_real_io_l();
//ASI_PRIMARY
0x80: FailUnimpl::lddfa_p();
//ASI_PRIMARY_LITTLE
0x88: FailUnimpl::lddfa_pl();
//ASI_SECONDARY
0x81: FailUnimpl::lddfa_s();
//ASI_SECONDARY_LITTLE
0x89: FailUnimpl::lddfa_sl();
//ASI_PRIMARY_NO_FAULT
0x82: FailUnimpl::lddfa_pnf();
//ASI_PRIMARY_NO_FAULT_LITTLE
0x8A: FailUnimpl::lddfa_pnfl();
//ASI_SECONDARY_NO_FAULT
0x83: FailUnimpl::lddfa_snf();
//ASI_SECONDARY_NO_FAULT_LITTLE
0x8B: FailUnimpl::lddfa_snfl();
format BlockLoad {
// LDBLOCKF
//ASI_BLOCK_AS_IF_USER_PRIMARY
0x16: FailUnimpl::ldblockf_aiup();
//ASI_BLOCK_AS_IF_USER_SECONDARY
0x17: FailUnimpl::ldblockf_aius();
//ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
0x1E: FailUnimpl::ldblockf_aiupl();
//ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
0x1F: FailUnimpl::ldblockf_aiusl();
//ASI_BLOCK_PRIMARY
0xF0: ldblockf_p({{Frd_N.udw = Mem.udw;}}, {{EXT_ASI}});
//ASI_BLOCK_SECONDARY
0xF1: FailUnimpl::ldblockf_s();
//ASI_BLOCK_PRIMARY_LITTLE
0xF8: FailUnimpl::ldblockf_pl();
//ASI_BLOCK_SECONDARY_LITTLE
0xF9: FailUnimpl::ldblockf_sl();
}
//LDSHORTF
//ASI_FL8_PRIMARY
0xD0: FailUnimpl::ldshortf_8p();
//ASI_FL8_SECONDARY
0xD1: FailUnimpl::ldshortf_8s();
//ASI_FL8_PRIMARY_LITTLE
0xD8: FailUnimpl::ldshortf_8pl();
//ASI_FL8_SECONDARY_LITTLE
0xD9: FailUnimpl::ldshortf_8sl();
//ASI_FL16_PRIMARY
0xD2: FailUnimpl::ldshortf_16p();
//ASI_FL16_SECONDARY
0xD3: FailUnimpl::ldshortf_16s();
//ASI_FL16_PRIMARY_LITTLE
0xDA: FailUnimpl::ldshortf_16pl();
//ASI_FL16_SECONDARY_LITTLE
0xDB: FailUnimpl::ldshortf_16sl();
//Not an ASI which is legal with lddfa
default: Trap::lddfa_bad_asi(
{{fault = new DataAccessException;}});
}
}
0x34: Store::stfa({{Mem.uw = Frds.uw;}});
0x36: stqfa({{fault = new FpDisabled;}});
format StoreAlt {
0x37: decode EXT_ASI {
//ASI_NUCLEUS
0x04: FailUnimpl::stdfa_n();
//ASI_NUCLEUS_LITTLE
0x0C: FailUnimpl::stdfa_nl();
//ASI_AS_IF_USER_PRIMARY
0x10: FailUnimpl::stdfa_aiup();
//ASI_AS_IF_USER_PRIMARY_LITTLE
0x18: FailUnimpl::stdfa_aiupl();
//ASI_AS_IF_USER_SECONDARY
0x11: FailUnimpl::stdfa_aius();
//ASI_AS_IF_USER_SECONDARY_LITTLE
0x19: FailUnimpl::stdfa_aiusl();
//ASI_REAL
0x14: FailUnimpl::stdfa_real();
//ASI_REAL_LITTLE
0x1C: FailUnimpl::stdfa_real_l();
//ASI_REAL_IO
0x15: FailUnimpl::stdfa_real_io();
//ASI_REAL_IO_LITTLE
0x1D: FailUnimpl::stdfa_real_io_l();
//ASI_PRIMARY
0x80: FailUnimpl::stdfa_p();
//ASI_PRIMARY_LITTLE
0x88: FailUnimpl::stdfa_pl();
//ASI_SECONDARY
0x81: FailUnimpl::stdfa_s();
//ASI_SECONDARY_LITTLE
0x89: FailUnimpl::stdfa_sl();
//ASI_PRIMARY_NO_FAULT
0x82: FailUnimpl::stdfa_pnf();
//ASI_PRIMARY_NO_FAULT_LITTLE
0x8A: FailUnimpl::stdfa_pnfl();
//ASI_SECONDARY_NO_FAULT
0x83: FailUnimpl::stdfa_snf();
//ASI_SECONDARY_NO_FAULT_LITTLE
0x8B: FailUnimpl::stdfa_snfl();
format BlockStore {
// STBLOCKF
//ASI_BLOCK_AS_IF_USER_PRIMARY
0x16: FailUnimpl::stblockf_aiup();
//ASI_BLOCK_AS_IF_USER_SECONDARY
0x17: FailUnimpl::stblockf_aius();
//ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
0x1E: FailUnimpl::stblockf_aiupl();
//ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
0x1F: FailUnimpl::stblockf_aiusl();
//ASI_BLOCK_PRIMARY
0xF0: stblockf_p({{Mem.udw = Frd_N.udw;}}, {{EXT_ASI}});
//ASI_BLOCK_SECONDARY
0xF1: FailUnimpl::stblockf_s();
//ASI_BLOCK_PRIMARY_LITTLE
0xF8: FailUnimpl::stblockf_pl();
//ASI_BLOCK_SECONDARY_LITTLE
0xF9: FailUnimpl::stblockf_sl();
}
//STSHORTF
//ASI_FL8_PRIMARY
0xD0: FailUnimpl::stshortf_8p();
//ASI_FL8_SECONDARY
0xD1: FailUnimpl::stshortf_8s();
//ASI_FL8_PRIMARY_LITTLE
0xD8: FailUnimpl::stshortf_8pl();
//ASI_FL8_SECONDARY_LITTLE
0xD9: FailUnimpl::stshortf_8sl();
//ASI_FL16_PRIMARY
0xD2: FailUnimpl::stshortf_16p();
//ASI_FL16_SECONDARY
0xD3: FailUnimpl::stshortf_16s();
//ASI_FL16_PRIMARY_LITTLE
0xDA: FailUnimpl::stshortf_16pl();
//ASI_FL16_SECONDARY_LITTLE
0xDB: FailUnimpl::stshortf_16sl();
//Not an ASI which is legal with lddfa
default: Trap::stdfa_bad_asi(
{{fault = new DataAccessException;}});
}
}
0x3C: CasAlt::casa({{
mem_data = htog(Rs2.uw);
Mem.uw = Rd.uw;}},
{{
uint32_t tmp = mem_data;
Rd.uw = tmp;
}}, {{EXT_ASI}}, MEM_SWAP_COND);
0x3D: Nop::prefetcha({{ }});
0x3E: CasAlt::casxa({{mem_data = gtoh(Rs2);
Mem.udw = Rd.udw; }},
{{ Rd.udw = mem_data; }}, {{EXT_ASI}}, MEM_SWAP_COND);
}
}
}