gem5/src/cpu/simple/atomic.cc
Steve Reinhardt cde5a79eab Additional comments and helper functions for PrintReq.
--HG--
extra : convert_revision : 7eadf9b7db8c0289480f771271b6efe2400006d4
2008-01-02 13:46:22 -08:00

835 lines
23 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#include "arch/locked_mem.hh"
#include "arch/mmaped_ipr.hh"
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/atomic.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/AtomicSimpleCPU.hh"
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
{
}
void
AtomicSimpleCPU::TickEvent::process()
{
cpu->tick();
}
const char *
AtomicSimpleCPU::TickEvent::description()
{
return "AtomicSimpleCPU tick";
}
Port *
AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
{
if (if_name == "dcache_port")
return &dcachePort;
else if (if_name == "icache_port")
return &icachePort;
else if (if_name == "physmem_port") {
hasPhysMemPort = true;
return &physmemPort;
}
else
panic("No Such Port\n");
}
void
AtomicSimpleCPU::init()
{
BaseCPU::init();
cpuId = tc->readCpuId();
#if FULL_SYSTEM
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
// initialize CPU, including PC
TheISA::initCPU(tc, cpuId);
}
#endif
if (hasPhysMemPort) {
bool snoop = false;
AddrRangeList pmAddrList;
physmemPort.getPeerAddressRanges(pmAddrList, snoop);
physMemAddr = *pmAddrList.begin();
}
ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
}
bool
AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
{
panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
return true;
}
Tick
AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
{
//Snooping a coherence request, just return
return 0;
}
void
AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
{
//No internal storage to update, just return
return;
}
void
AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
{
if (status == RangeChange) {
if (!snoopRangeSent) {
snoopRangeSent = true;
sendStatusChange(Port::RangeChange);
}
return;
}
panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
}
void
AtomicSimpleCPU::CpuPort::recvRetry()
{
panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
}
void
AtomicSimpleCPU::DcachePort::setPeer(Port *port)
{
Port::setPeer(port);
#if FULL_SYSTEM
// Update the ThreadContext's memory ports (Functional/Virtual
// Ports)
cpu->tcBase()->connectMemPorts();
#endif
}
AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
: BaseSimpleCPU(p), tickEvent(this),
width(p->width), simulate_stalls(p->simulate_stalls),
icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
physmemPort(name() + "-iport", this), hasPhysMemPort(false)
{
_status = Idle;
icachePort.snoopRangeSent = false;
dcachePort.snoopRangeSent = false;
}
AtomicSimpleCPU::~AtomicSimpleCPU()
{
}
void
AtomicSimpleCPU::serialize(ostream &os)
{
SimObject::State so_state = SimObject::getState();
SERIALIZE_ENUM(so_state);
Status _status = status();
SERIALIZE_ENUM(_status);
BaseSimpleCPU::serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
}
void
AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
SimObject::State so_state;
UNSERIALIZE_ENUM(so_state);
UNSERIALIZE_ENUM(_status);
BaseSimpleCPU::unserialize(cp, section);
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
void
AtomicSimpleCPU::resume()
{
if (_status == Idle || _status == SwitchedOut)
return;
DPRINTF(SimpleCPU, "Resume\n");
assert(system->getMemoryMode() == Enums::atomic);
changeState(SimObject::Running);
if (thread->status() == ThreadContext::Active) {
if (!tickEvent.scheduled()) {
tickEvent.schedule(nextCycle());
}
}
}
void
AtomicSimpleCPU::switchOut()
{
assert(status() == Running || status() == Idle);
_status = SwitchedOut;
tickEvent.squash();
}
void
AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
assert(!tickEvent.scheduled());
// if any of this CPU's ThreadContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
if (tc->status() == ThreadContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(nextCycle());
break;
}
}
if (_status != Running) {
_status = Idle;
}
assert(threadContexts.size() == 1);
cpuId = tc->readCpuId();
ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
}
void
AtomicSimpleCPU::activateContext(int thread_num, int delay)
{
DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
assert(thread_num == 0);
assert(thread);
assert(_status == Idle);
assert(!tickEvent.scheduled());
notIdleFraction++;
numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
//Make sure ticks are still on multiples of cycles
tickEvent.schedule(nextCycle(curTick + ticks(delay)));
_status = Running;
}
void
AtomicSimpleCPU::suspendContext(int thread_num)
{
DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
assert(thread_num == 0);
assert(thread);
assert(_status == Running);
// tick event may not be scheduled if this gets called from inside
// an instruction's execution, e.g. "quiesce"
if (tickEvent.scheduled())
tickEvent.deschedule();
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
// use the CPU's statically allocated read request and packet objects
Request *req = &data_read_req;
if (traceData) {
traceData->setAddr(addr);
}
//The block size of our peer.
int blockSize = dcachePort.peerBlockSize();
//The size of the data we're trying to read.
int dataSize = sizeof(T);
uint8_t * dataPtr = (uint8_t *)&data;
//The address of the second part of this access if it needs to be split
//across a cache line boundary.
Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
if(secondAddr > addr)
dataSize = secondAddr - addr;
dcache_latency = 0;
while(1) {
req->setVirt(0, addr, dataSize, flags, thread->readPC());
// translate to physical address
Fault fault = thread->translateDataReadReq(req);
// Now do the access.
if (fault == NoFault) {
Packet pkt = Packet(req,
req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
Packet::Broadcast);
pkt.dataStatic(dataPtr);
if (req->isMmapedIpr())
dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
else {
if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
dcache_latency += physmemPort.sendAtomic(&pkt);
else
dcache_latency += dcachePort.sendAtomic(&pkt);
}
dcache_access = true;
assert(!pkt.isError());
if (req->isLocked()) {
TheISA::handleLockedRead(thread, req);
}
}
// This will need a new way to tell if it has a dcache attached.
if (req->isUncacheable())
recordEvent("Uncached Read");
//If there's a fault, return it
if (fault != NoFault)
return fault;
//If we don't need to access a second cache line, stop now.
if (secondAddr <= addr)
{
data = gtoh(data);
return fault;
}
/*
* Set up for accessing the second cache line.
*/
//Move the pointer we're reading into to the correct location.
dataPtr += dataSize;
//Adjust the size to get the remaining bytes.
dataSize = addr + sizeof(T) - secondAddr;
//And access the right address.
addr = secondAddr;
}
}
Fault
AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
int size, unsigned flags)
{
// use the CPU's statically allocated read request and packet objects
Request *req = &data_read_req;
if (traceData) {
traceData->setAddr(vaddr);
}
//The block size of our peer.
int blockSize = dcachePort.peerBlockSize();
//The size of the data we're trying to read.
int dataSize = size;
bool firstTimeThrough = true;
//The address of the second part of this access if it needs to be split
//across a cache line boundary.
Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
if(secondAddr > vaddr)
dataSize = secondAddr - vaddr;
while(1) {
req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
// translate to physical address
Fault fault = thread->translateDataReadReq(req);
//If there's a fault, return it
if (fault != NoFault)
return fault;
if (firstTimeThrough) {
paddr = req->getPaddr();
firstTimeThrough = false;
}
//If we don't need to access a second cache line, stop now.
if (secondAddr <= vaddr)
return fault;
/*
* Set up for accessing the second cache line.
*/
//Adjust the size to get the remaining bytes.
dataSize = vaddr + size - secondAddr;
//And access the right address.
vaddr = secondAddr;
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
// use the CPU's statically allocated write request and packet objects
Request *req = &data_write_req;
if (traceData) {
traceData->setAddr(addr);
}
//The block size of our peer.
int blockSize = dcachePort.peerBlockSize();
//The size of the data we're trying to read.
int dataSize = sizeof(T);
uint8_t * dataPtr = (uint8_t *)&data;
//The address of the second part of this access if it needs to be split
//across a cache line boundary.
Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
if(secondAddr > addr)
dataSize = secondAddr - addr;
dcache_latency = 0;
while(1) {
req->setVirt(0, addr, dataSize, flags, thread->readPC());
// translate to physical address
Fault fault = thread->translateDataWriteReq(req);
// Now do the access.
if (fault == NoFault) {
MemCmd cmd = MemCmd::WriteReq; // default
bool do_access = true; // flag to suppress cache access
if (req->isLocked()) {
cmd = MemCmd::StoreCondReq;
do_access = TheISA::handleLockedWrite(thread, req);
} else if (req->isSwap()) {
cmd = MemCmd::SwapReq;
if (req->isCondSwap()) {
assert(res);
req->setExtraData(*res);
}
}
if (do_access) {
Packet pkt = Packet(req, cmd, Packet::Broadcast);
pkt.dataStatic(dataPtr);
if (req->isMmapedIpr()) {
dcache_latency +=
TheISA::handleIprWrite(thread->getTC(), &pkt);
} else {
//XXX This needs to be outside of the loop in order to
//work properly for cache line boundary crossing
//accesses in transendian simulations.
data = htog(data);
if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
dcache_latency += physmemPort.sendAtomic(&pkt);
else
dcache_latency += dcachePort.sendAtomic(&pkt);
}
dcache_access = true;
assert(!pkt.isError());
if (req->isSwap()) {
assert(res);
*res = pkt.get<T>();
}
}
if (res && !req->isSwap()) {
*res = req->getExtraData();
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (req->isUncacheable())
recordEvent("Uncached Write");
//If there's a fault or we don't need to access a second cache line,
//stop now.
if (fault != NoFault || secondAddr <= addr)
{
// If the write needs to have a fault on the access, consider
// calling changeStatus() and changing it to "bad addr write"
// or something.
return fault;
}
/*
* Set up for accessing the second cache line.
*/
//Move the pointer we're reading into to the correct location.
dataPtr += dataSize;
//Adjust the size to get the remaining bytes.
dataSize = addr + sizeof(T) - secondAddr;
//And access the right address.
addr = secondAddr;
}
}
Fault
AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
int size, unsigned flags)
{
// use the CPU's statically allocated write request and packet objects
Request *req = &data_write_req;
if (traceData) {
traceData->setAddr(vaddr);
}
//The block size of our peer.
int blockSize = dcachePort.peerBlockSize();
//The address of the second part of this access if it needs to be split
//across a cache line boundary.
Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
//The size of the data we're trying to read.
int dataSize = size;
bool firstTimeThrough = true;
if(secondAddr > vaddr)
dataSize = secondAddr - vaddr;
dcache_latency = 0;
while(1) {
req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
// translate to physical address
Fault fault = thread->translateDataWriteReq(req);
//If there's a fault or we don't need to access a second cache line,
//stop now.
if (fault != NoFault)
return fault;
if (firstTimeThrough) {
paddr = req->getPaddr();
firstTimeThrough = false;
}
if (secondAddr <= vaddr)
return fault;
/*
* Set up for accessing the second cache line.
*/
//Adjust the size to get the remaining bytes.
dataSize = vaddr + size - secondAddr;
//And access the right address.
vaddr = secondAddr;
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::write(Twin32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(Twin64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
AtomicSimpleCPU::tick()
{
DPRINTF(SimpleCPU, "Tick\n");
Tick latency = ticks(1); // instruction takes one cycle by default
for (int i = 0; i < width; ++i) {
numCycles++;
if (!curStaticInst || !curStaticInst->isDelayedCommit())
checkForInterrupts();
Fault fault = setupFetchRequest(&ifetch_req);
if (fault == NoFault) {
Tick icache_latency = 0;
bool icache_access = false;
dcache_access = false; // assume no dcache access
//Fetch more instruction memory if necessary
//if(predecoder.needMoreBytes())
//{
icache_access = true;
Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
Packet::Broadcast);
ifetch_pkt.dataStatic(&inst);
if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
else
icache_latency = icachePort.sendAtomic(&ifetch_pkt);
assert(!ifetch_pkt.isError());
// ifetch_req is initialized to read the instruction directly
// into the CPU object's inst field.
//}
preExecute();
if (curStaticInst) {
fault = curStaticInst->execute(this, traceData);
// keep an instruction count
if (fault == NoFault)
countInst();
else if (traceData) {
// If there was a fault, we should trace this instruction.
delete traceData;
traceData = NULL;
}
postExecute();
}
// @todo remove me after debugging with legion done
if (curStaticInst && (!curStaticInst->isMicroop() ||
curStaticInst->isFirstMicroop()))
instCnt++;
if (simulate_stalls) {
Tick icache_stall =
icache_access ? icache_latency - ticks(1) : 0;
Tick dcache_stall =
dcache_access ? dcache_latency - ticks(1) : 0;
Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1);
if (ticks(stall_cycles) < (icache_stall + dcache_stall))
latency += ticks(stall_cycles+1);
else
latency += ticks(stall_cycles);
}
}
if(fault != NoFault || !stayAtPC)
advancePC(fault);
}
if (_status != Idle)
tickEvent.schedule(curTick + latency);
}
void
AtomicSimpleCPU::printAddr(Addr a)
{
dcachePort.printAddr(a);
}
////////////////////////////////////////////////////////////////////////
//
// AtomicSimpleCPU Simulation Object
//
AtomicSimpleCPU *
AtomicSimpleCPUParams::create()
{
AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
params->name = name;
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->progress_interval = progress_interval;
params->deferRegistration = defer_registration;
params->phase = phase;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->width = width;
params->simulate_stalls = simulate_stalls;
params->system = system;
params->cpu_id = cpu_id;
params->tracer = tracer;
params->itb = itb;
params->dtb = dtb;
#if FULL_SYSTEM
params->profile = profile;
params->do_quiesce = do_quiesce;
params->do_checkpoint_insts = do_checkpoint_insts;
params->do_statistics_insts = do_statistics_insts;
#else
if (workload.size() != 1)
panic("only one workload allowed");
params->process = workload[0];
#endif
AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
return cpu;
}