gem5/src/arch/sparc/regfile.hh
Ali Saidi cb0cf2dd8a Updated Authors from bk prs info
--HG--
extra : convert_revision : 77f475b156d81c03a2811818fa23593d5615c685
2006-05-31 19:26:56 -04:00

865 lines
30 KiB
C++

/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
*/
#ifndef __ARCH_SPARC_REGFILE_HH__
#define __ARCH_SPARC_REGFILE_HH__
#include "arch/sparc/exceptions.hh"
#include "arch/sparc/faults.hh"
#include "base/trace.hh"
#include "sim/byteswap.hh"
#include "cpu/cpuevent.hh"
#include "sim/host.hh"
class Checkpoint;
namespace SparcISA
{
typedef uint8_t RegIndex;
// MAXTL - maximum trap level
const int MaxPTL = 2;
const int MaxTL = 6;
const int MaxGL = 3;
const int MaxPGL = 2;
// NWINDOWS - number of register windows, can be 3 to 32
const int NWindows = 32;
const int AsrStart = 0;
const int PrStart = 32;
const int HprStart = 64;
const int MiscStart = 96;
const uint64_t Bit64 = 0x8000000000000000;
class IntRegFile
{
protected:
static const int FrameOffsetBits = 3;
static const int FrameNumBits = 2;
static const int RegsPerFrame = 1 << FrameOffsetBits;
static const int FrameNumMask =
(FrameNumBits == sizeof(int)) ?
(unsigned int)(-1) :
(1 << FrameNumBits) - 1;
static const int FrameOffsetMask =
(FrameOffsetBits == sizeof(int)) ?
(unsigned int)(-1) :
(1 << FrameOffsetBits) - 1;
IntReg regGlobals[MaxGL][RegsPerFrame];
IntReg regSegments[2 * NWindows][RegsPerFrame];
enum regFrame {Globals, Outputs, Locals, Inputs, NumFrames};
IntReg * regView[NumFrames];
static const int RegGlobalOffset = 0;
static const int FrameOffset = MaxGL * RegsPerFrame;
int offset[NumFrames];
public:
int flattenIndex(int reg)
{
int flatIndex = offset[reg >> FrameOffsetBits]
| (reg & FrameOffsetMask);
DPRINTF(Sparc, "Flattened index %d into %d.\n", reg, flatIndex);
return flatIndex;
}
void clear()
{
int x;
for (x = 0; x < MaxGL; x++)
memset(regGlobals[x], 0, sizeof(regGlobals[x]));
for(int x = 0; x < 2 * NWindows; x++)
bzero(regSegments[x], sizeof(regSegments[x]));
}
IntRegFile()
{
offset[Globals] = 0;
regView[Globals] = regGlobals[0];
setCWP(0);
clear();
}
IntReg readReg(int intReg)
{
IntReg val =
regView[intReg >> FrameOffsetBits][intReg & FrameOffsetMask];
DPRINTF(Sparc, "Read register %d = 0x%x\n", intReg, val);
return val;
}
Fault setReg(int intReg, const IntReg &val)
{
if(intReg)
DPRINTF(Sparc, "Wrote register %d = 0x%x\n", intReg, val);
regView[intReg >> FrameOffsetBits][intReg & FrameOffsetMask] = val;
return NoFault;
}
//This doesn't effect the actual CWP register.
//It's purpose is to adjust the view of the register file
//to what it would be if CWP = cwp.
void setCWP(int cwp)
{
int index = ((NWindows - cwp) % NWindows) * 2;
offset[Outputs] = FrameOffset + (index * RegsPerFrame);
offset[Locals] = FrameOffset + ((index+1) * RegsPerFrame);
offset[Inputs] = FrameOffset +
(((index+2) % (NWindows * 2)) * RegsPerFrame);
regView[Outputs] = regSegments[index];
regView[Locals] = regSegments[index+1];
regView[Inputs] = regSegments[(index+2) % (NWindows * 2)];
DPRINTF(Sparc, "Changed the CWP value to %d\n", cwp);
}
void setGlobals(int gl)
{
DPRINTF(Sparc, "Now using %d globals", gl);
regView[Globals] = regGlobals[gl];
offset[Globals] = RegGlobalOffset + gl * RegsPerFrame;
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
typedef float float32_t;
typedef double float64_t;
//FIXME long double refers to a 10 byte float, rather than a
//16 byte float as required. This data type may have to be emulated.
typedef double float128_t;
class FloatRegFile
{
public:
static const int SingleWidth = 32;
static const int DoubleWidth = 64;
static const int QuadWidth = 128;
protected:
//Since the floating point registers overlap each other,
//A generic storage space is used. The float to be returned is
//pulled from the appropriate section of this region.
char regSpace[SingleWidth / 8 * NumFloatRegs];
public:
void clear()
{
bzero(regSpace, sizeof(regSpace));
}
FloatReg readReg(int floatReg, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
float32_t result32;
memcpy(&result32, regSpace + 4 * floatReg, width);
return htog(result32);
case DoubleWidth:
float64_t result64;
memcpy(&result64, regSpace + 4 * floatReg, width);
return htog(result64);
case QuadWidth:
float128_t result128;
memcpy(&result128, regSpace + 4 * floatReg, width);
return htog(result128);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
}
FloatRegBits readRegBits(int floatReg, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
uint32_t result32;
memcpy(&result32, regSpace + 4 * floatReg, width);
return htog(result32);
case DoubleWidth:
uint64_t result64;
memcpy(&result64, regSpace + 4 * floatReg, width);
return htog(result64);
case QuadWidth:
uint64_t result128;
memcpy(&result128, regSpace + 4 * floatReg, width);
return htog(result128);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
}
Fault setReg(int floatReg, const FloatReg &val, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
uint32_t result32 = gtoh((uint32_t)val);
memcpy(regSpace + 4 * floatReg, &result32, width);
case DoubleWidth:
uint64_t result64 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result64, width);
case QuadWidth:
uint64_t result128 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result128, width);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
return NoFault;
}
Fault setRegBits(int floatReg, const FloatRegBits &val, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
uint32_t result32 = gtoh((uint32_t)val);
memcpy(regSpace + 4 * floatReg, &result32, width);
case DoubleWidth:
uint64_t result64 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result64, width);
case QuadWidth:
uint64_t result128 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result128, width);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
return NoFault;
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
enum MiscRegIndex
{
/** Ancillary State Registers */
MISCREG_Y = AsrStart + 0,
MISCREG_CCR = AsrStart + 2,
MISCREG_ASI = AsrStart + 3,
MISCREG_TICK = AsrStart + 4,
MISCREG_PC = AsrStart + 5,
MISCREG_FPRS = AsrStart + 6,
MISCREG_PCR = AsrStart + 16,
MISCREG_PIC = AsrStart + 17,
MISCREG_GSR = AsrStart + 19,
MISCREG_SOFTINT_SET = AsrStart + 20,
MISCREG_SOFTINT_CLR = AsrStart + 21,
MISCREG_SOFTINT = AsrStart + 22,
MISCREG_TICK_CMPR = AsrStart + 23,
MISCREG_STICK = AsrStart + 24,
MISCREG_STICK_CMPR = AsrStart + 25,
/** Privilged Registers */
MISCREG_TPC = PrStart + 0,
MISCREG_TNPC = PrStart + 1,
MISCREG_TSTATE = PrStart + 2,
MISCREG_TT = PrStart + 3,
MISCREG_PRIVTICK = PrStart + 4,
MISCREG_TBA = PrStart + 5,
MISCREG_PSTATE = PrStart + 6,
MISCREG_TL = PrStart + 7,
MISCREG_PIL = PrStart + 8,
MISCREG_CWP = PrStart + 9,
MISCREG_CANSAVE = PrStart + 10,
MISCREG_CANRESTORE = PrStart + 11,
MISCREG_CLEANWIN = PrStart + 12,
MISCREG_OTHERWIN = PrStart + 13,
MISCREG_WSTATE = PrStart + 14,
MISCREG_GL = PrStart + 16,
/** Hyper privileged registers */
MISCREG_HPSTATE = HprStart + 0,
MISCREG_HTSTATE = HprStart + 1,
MISCREG_HINTP = HprStart + 3,
MISCREG_HTBA = HprStart + 5,
MISCREG_HVER = HprStart + 6,
MISCREG_STRAND_STS_REG = HprStart + 16,
MISCREG_HSTICK_CMPR = HprStart + 31,
/** Floating Point Status Register */
MISCREG_FSR = MiscStart + 0
};
// The control registers, broken out into fields
class MiscRegFile
{
private:
/* ASR Registers */
union {
uint64_t y; // Y (used in obsolete multiplication)
struct {
uint64_t value:32; // The actual value stored in y
uint64_t :32; // reserved bits
} yFields;
};
union {
uint8_t ccr; // Condition Code Register
struct {
union {
uint8_t icc:4; // 32-bit condition codes
struct {
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} iccFields;
};
union {
uint8_t xcc:4; // 64-bit condition codes
struct {
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} xccFields;
};
} ccrFields;
};
uint8_t asi; // Address Space Identifier
union {
uint64_t tick; // Hardware clock-tick counter
struct {
int64_t counter:63; // Clock-tick count
uint64_t npt:1; // Non-priveleged trap
} tickFields;
};
union {
uint8_t fprs; // Floating-Point Register State
struct {
uint8_t dl:1; // Dirty lower
uint8_t du:1; // Dirty upper
uint8_t fef:1; // FPRS enable floating-Point
} fprsFields;
};
union {
uint64_t softint;
struct {
uint64_t tm:1;
uint64_t int_level:14;
uint64_t sm:1;
} softintFields;
};
union {
uint64_t tick_cmpr; // Hardware tick compare registers
struct {
uint64_t tick_cmpr:63; // Clock-tick count
uint64_t int_dis:1; // Non-priveleged trap
} tick_cmprFields;
};
union {
uint64_t stick; // Hardware clock-tick counter
struct {
int64_t :63; // Not used, storage in SparcSystem
uint64_t npt:1; // Non-priveleged trap
} stickFields;
};
union {
uint64_t stick_cmpr; // Hardware tick compare registers
struct {
uint64_t tick_cmpr:63; // Clock-tick count
uint64_t int_dis:1; // Non-priveleged trap
} stick_cmprFields;
};
/* Privileged Registers */
uint64_t tpc[MaxTL]; // Trap Program Counter (value from
// previous trap level)
uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from
// previous trap level)
union {
uint64_t tstate[MaxTL]; // Trap State
struct {
//Values are from previous trap level
uint64_t cwp:5; // Current Window Pointer
uint64_t :3; // Reserved bits
uint64_t pstate:13; // Process State
uint64_t :3; // Reserved bits
uint64_t asi:8; // Address Space Identifier
uint64_t ccr:8; // Condition Code Register
uint64_t gl:8; // Global level
} tstateFields[MaxTL];
};
uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured
// on the previous level)
uint64_t tba; // Trap Base Address
union {
uint16_t pstate; // Process State Register
struct {
uint16_t :1; // reserved
uint16_t ie:1; // Interrupt enable
uint16_t priv:1; // Privelege mode
uint16_t am:1; // Address mask
uint16_t pef:1; // PSTATE enable floating-point
uint16_t :1; // reserved2
uint16_t mm:2; // Memory Model
uint16_t tle:1; // Trap little-endian
uint16_t cle:1; // Current little-endian
} pstateFields;
};
uint8_t tl; // Trap Level
uint8_t pil; // Process Interrupt Register
uint8_t cwp; // Current Window Pointer
uint8_t cansave; // Savable windows
uint8_t canrestore; // Restorable windows
uint8_t cleanwin; // Clean windows
uint8_t otherwin; // Other windows
union {
uint8_t wstate; // Window State
struct {
uint8_t normal:3; // Bits TT<4:2> are set to on a normal
// register window trap
uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin"
// register window trap
} wstateFields;
};
uint8_t gl; // Global level register
/** Hyperprivileged Registers */
union {
uint64_t hpstate; // Hyperprivileged State Register
struct {
uint8_t tlz: 1;
uint8_t :1;
uint8_t hpriv:1;
uint8_t :2;
uint8_t red:1;
uint8_t :4;
uint8_t ibe:1;
uint8_t id:1;
} hpstateFields;
};
uint64_t htstate[MaxTL]; // Hyperprivileged Trap State Register
uint64_t hintp;
uint64_t htba; // Hyperprivileged Trap Base Address register
union {
uint64_t hstick_cmpr; // Hardware tick compare registers
struct {
uint64_t tick_cmpr:63; // Clock-tick count
uint64_t int_dis:1; // Non-priveleged trap
} hstick_cmprFields;
};
uint64_t strandStatusReg; // Per strand status register
/** Floating point misc registers. */
union {
uint64_t fsr; // Floating-Point State Register
struct {
union {
uint64_t cexc:5; // Current excpetion
struct {
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} cexcFields;
};
union {
uint64_t aexc:5; // Accrued exception
struct {
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} aexcFields;
};
uint64_t fcc0:2; // Floating-Point condtion codes
uint64_t :1; // Reserved bits
uint64_t qne:1; // Deferred trap queue not empty
// with no queue, it should read 0
uint64_t ftt:3; // Floating-Point trap type
uint64_t ver:3; // Version (of the FPU)
uint64_t :2; // Reserved bits
uint64_t ns:1; // Nonstandard floating point
union {
uint64_t tem:5; // Trap Enable Mask
struct {
uint64_t nxm:1; // Inexact
uint64_t dzm:1; // Divide by zero
uint64_t ufm:1; // Underflow
uint64_t ofm:1; // Overflow
uint64_t nvm:1; // Invalid operand
} temFields;
};
uint64_t :2; // Reserved bits
uint64_t rd:2; // Rounding direction
uint64_t fcc1:2; // Floating-Point condition codes
uint64_t fcc2:2; // Floating-Point condition codes
uint64_t fcc3:2; // Floating-Point condition codes
uint64_t :26; // Reserved bits
} fsrFields;
};
// These need to check the int_dis field and if 0 then
// set appropriate bit in softint and checkinterrutps on the cpu
#if FULL_SYSTEM
/** Process a tick compare event and generate an interrupt on the cpu if
* appropriate. */
void processTickCompare(ExecContext *xc);
void processSTickCompare(ExecContext *xc);
void processHSTickCompare(ExecContext *xc);
typedef CpuEventWrapper<MiscRegFile,
&MiscRegFile::processTickCompare> TickCompareEvent;
TickCompareEvent *tickCompare;
typedef CpuEventWrapper<MiscRegFile,
&MiscRegFile::processSTickCompare> STickCompareEvent;
STickCompareEvent *sTickCompare;
typedef CpuEventWrapper<MiscRegFile,
&MiscRegFile::processHSTickCompare> HSTickCompareEvent;
HSTickCompareEvent *hSTickCompare;
/** Fullsystem only register version of ReadRegWithEffect() */
MiscReg readFSRegWithEffect(int miscReg, Fault &fault, ExecContext *xc);
/** Fullsystem only register version of SetRegWithEffect() */
Fault setFSRegWithEffect(int miscReg, const MiscReg &val,
ExecContext * xc);
#endif
public:
void reset()
{
pstateFields.pef = 0; //No FPU
//pstateFields.pef = 1; //FPU
#if FULL_SYSTEM
//For SPARC, when a system is first started, there is a power
//on reset Trap which sets the processor into the following state.
//Bits that aren't set aren't defined on startup.
tl = MaxTL;
gl = MaxGL;
tickFields.counter = 0; //The TICK register is unreadable bya
tickFields.npt = 1; //The TICK register is unreadable by by !priv
softint = 0; // Clear all the soft interrupt bits
tick_cmprFields.int_dis = 1; // disable timer compare interrupts
tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
stickFields.npt = 1; //The TICK register is unreadable by by !priv
stick_cmprFields.int_dis = 1; // disable timer compare interrupts
stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
tt[tl] = power_on_reset;
pstate = 0; // fields 0 but pef
pstateFields.pef = 1;
hpstate = 0;
hpstateFields.red = 1;
hpstateFields.hpriv = 1;
hpstateFields.tlz = 0; // this is a guess
hintp = 0; // no interrupts pending
hstick_cmprFields.int_dis = 1; // disable timer compare interrupts
hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
#else
/* //This sets up the initial state of the processor for usermode processes
pstateFields.priv = 0; //Process runs in user mode
pstateFields.ie = 1; //Interrupts are enabled
fsrFields.rd = 0; //Round to nearest
fsrFields.tem = 0; //Floating point traps not enabled
fsrFields.ns = 0; //Non standard mode off
fsrFields.qne = 0; //Floating point queue is empty
fsrFields.aexc = 0; //No accrued exceptions
fsrFields.cexc = 0; //No current exceptions
//Register window management registers
otherwin = 0; //No windows contain info from other programs
canrestore = 0; //There are no windows to pop
cansave = MaxTL - 2; //All windows are available to save into
cleanwin = MaxTL;*/
#endif
}
MiscRegFile()
{
reset();
}
/** read a value out of an either an SE or FS IPR. No checking is done
* about SE vs. FS as this is mostly used to copy the regfile. Thus more
* register are copied that are necessary for FS. However this prevents
* a bunch of ifdefs and is rarely called so is not performance
* criticial. */
MiscReg readReg(int miscReg);
/** Read a value from an IPR. Only the SE iprs are here and the rest
* are are readFSRegWithEffect (which is called by readRegWithEffect()).
* Checking is done for permission based on state bits in the miscreg
* file. */
MiscReg readRegWithEffect(int miscReg, Fault &fault, ExecContext *xc);
/** write a value into an either an SE or FS IPR. No checking is done
* about SE vs. FS as this is mostly used to copy the regfile. Thus more
* register are copied that are necessary for FS. However this prevents
* a bunch of ifdefs and is rarely called so is not performance
* criticial.*/
Fault setReg(int miscReg, const MiscReg &val);
/** Write a value into an IPR. Only the SE iprs are here and the rest
* are are setFSRegWithEffect (which is called by setRegWithEffect()).
* Checking is done for permission based on state bits in the miscreg
* file. */
Fault setRegWithEffect(int miscReg,
const MiscReg &val, ExecContext * xc);
void serialize(std::ostream & os);
void unserialize(Checkpoint * cp, const std::string & section);
void copyMiscRegs(ExecContext * xc);
bool isHyperPriv() { return hpstateFields.hpriv; }
bool isPriv() { return hpstateFields.hpriv || pstateFields.priv; }
bool isNonPriv() { return !isPriv(); }
};
typedef union
{
IntReg intreg;
FloatReg fpreg;
MiscReg ctrlreg;
} AnyReg;
class RegFile
{
protected:
Addr pc; // Program Counter
Addr npc; // Next Program Counter
Addr nnpc;
public:
Addr readPC()
{
return pc;
}
void setPC(Addr val)
{
pc = val;
}
Addr readNextPC()
{
return npc;
}
void setNextPC(Addr val)
{
npc = val;
}
Addr readNextNPC()
{
return nnpc;
}
void setNextNPC(Addr val)
{
nnpc = val;
}
protected:
IntRegFile intRegFile; // integer register file
FloatRegFile floatRegFile; // floating point register file
MiscRegFile miscRegFile; // control register file
public:
void clear()
{
intRegFile.clear();
floatRegFile.clear();
}
int FlattenIntIndex(int reg)
{
return intRegFile.flattenIndex(reg);
}
MiscReg readMiscReg(int miscReg)
{
return miscRegFile.readReg(miscReg);
}
MiscReg readMiscRegWithEffect(int miscReg,
Fault &fault, ExecContext *xc)
{
return miscRegFile.readRegWithEffect(miscReg, fault, xc);
}
Fault setMiscReg(int miscReg, const MiscReg &val)
{
return miscRegFile.setReg(miscReg, val);
}
Fault setMiscRegWithEffect(int miscReg, const MiscReg &val,
ExecContext * xc)
{
return miscRegFile.setRegWithEffect(miscReg, val, xc);
}
FloatReg readFloatReg(int floatReg, int width)
{
return floatRegFile.readReg(floatReg, width);
}
FloatReg readFloatReg(int floatReg)
{
//Use the "natural" width of a single float
return floatRegFile.readReg(floatReg, FloatRegFile::SingleWidth);
}
FloatRegBits readFloatRegBits(int floatReg, int width)
{
return floatRegFile.readRegBits(floatReg, width);
}
FloatRegBits readFloatRegBits(int floatReg)
{
//Use the "natural" width of a single float
return floatRegFile.readRegBits(floatReg,
FloatRegFile::SingleWidth);
}
Fault setFloatReg(int floatReg, const FloatReg &val, int width)
{
return floatRegFile.setReg(floatReg, val, width);
}
Fault setFloatReg(int floatReg, const FloatReg &val)
{
//Use the "natural" width of a single float
return setFloatReg(floatReg, val, FloatRegFile::SingleWidth);
}
Fault setFloatRegBits(int floatReg, const FloatRegBits &val, int width)
{
return floatRegFile.setRegBits(floatReg, val, width);
}
Fault setFloatRegBits(int floatReg, const FloatRegBits &val)
{
//Use the "natural" width of a single float
return floatRegFile.setRegBits(floatReg, val,
FloatRegFile::SingleWidth);
}
IntReg readIntReg(int intReg)
{
return intRegFile.readReg(intReg);
}
Fault setIntReg(int intReg, const IntReg &val)
{
return intRegFile.setReg(intReg, val);
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
public:
enum ContextParam
{
CONTEXT_CWP,
CONTEXT_GLOBALS
};
typedef int ContextVal;
void changeContext(ContextParam param, ContextVal val)
{
switch(param)
{
case CONTEXT_CWP:
intRegFile.setCWP(val);
break;
case CONTEXT_GLOBALS:
intRegFile.setGlobals(val);
break;
default:
panic("Tried to set illegal context parameter in the SPARC regfile.\n");
}
}
};
void copyRegs(ExecContext *src, ExecContext *dest);
void copyMiscRegs(ExecContext *src, ExecContext *dest);
int InterruptLevel(uint64_t softint);
} // namespace SparcISA
#endif