gem5/configs/common/FSConfig.py

647 lines
26 KiB
Python

# Copyright (c) 2010-2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2010-2011 Advanced Micro Devices, Inc.
# Copyright (c) 2006-2008 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Kevin Lim
from m5.objects import *
from Benchmarks import *
from m5.util import convert
class CowIdeDisk(IdeDisk):
image = CowDiskImage(child=RawDiskImage(read_only=True),
read_only=False)
def childImage(self, ci):
self.image.child.image_file = ci
class MemBus(Bus):
badaddr_responder = BadAddr()
default = Self.badaddr_responder.pio
def makeLinuxAlphaSystem(mem_mode, mdesc = None):
IO_address_space_base = 0x80000000000
class BaseTsunami(Tsunami):
ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0)
ide = IdeController(disks=[Parent.disk0, Parent.disk2],
pci_func=0, pci_dev=0, pci_bus=0)
self = LinuxAlphaSystem()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.iobus = Bus(bus_id=0)
self.membus = MemBus(bus_id=1)
# By default the bridge responds to all addresses above the I/O
# base address (including the PCI config space)
self.bridge = Bridge(delay='50ns', nack_delay='4ns',
ranges = [AddrRange(IO_address_space_base, Addr.max)])
self.physmem = PhysicalMemory(range = AddrRange(mdesc.mem()))
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.physmem.port = self.membus.master
self.disk0 = CowIdeDisk(driveID='master')
self.disk2 = CowIdeDisk(driveID='master')
self.disk0.childImage(mdesc.disk())
self.disk2.childImage(disk('linux-bigswap2.img'))
self.tsunami = BaseTsunami()
self.tsunami.attachIO(self.iobus)
self.tsunami.ide.pio = self.iobus.master
self.tsunami.ide.config = self.iobus.master
self.tsunami.ide.dma = self.iobus.slave
self.tsunami.ethernet.pio = self.iobus.master
self.tsunami.ethernet.config = self.iobus.master
self.tsunami.ethernet.dma = self.iobus.slave
self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(),
read_only = True))
self.intrctrl = IntrControl()
self.mem_mode = mem_mode
self.terminal = Terminal()
self.kernel = binary('vmlinux')
self.pal = binary('ts_osfpal')
self.console = binary('console')
self.boot_osflags = 'root=/dev/hda1 console=ttyS0'
self.system_port = self.membus.slave
return self
def makeLinuxAlphaRubySystem(mem_mode, mdesc = None):
class BaseTsunami(Tsunami):
ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0)
ide = IdeController(disks=[Parent.disk0, Parent.disk2],
pci_func=0, pci_dev=0, pci_bus=0)
physmem = PhysicalMemory(range = AddrRange(mdesc.mem()))
self = LinuxAlphaSystem(physmem = physmem)
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
# Create pio bus to connect all device pio ports to rubymem's pio port
self.piobus = Bus(bus_id=0)
#
# Pio functional accesses from devices need direct access to memory
# RubyPort currently does support functional accesses. Therefore provide
# the piobus a direct connection to physical memory
#
self.piobus.master_port = physmem.port
self.disk0 = CowIdeDisk(driveID='master')
self.disk2 = CowIdeDisk(driveID='master')
self.disk0.childImage(mdesc.disk())
self.disk2.childImage(disk('linux-bigswap2.img'))
self.tsunami = BaseTsunami()
self.tsunami.attachIO(self.piobus)
self.tsunami.ide.pio = self.piobus.master
self.tsunami.ide.config = self.piobus.master
self.tsunami.ide.dma = self.piobus.slave
self.tsunami.ethernet.pio = self.piobus.master
self.tsunami.ethernet.config = self.piobus.master
self.tsunami.ethernet.dma = self.piobus.slave
#
# Store the dma devices for later connection to dma ruby ports.
# Append an underscore to dma_devices to avoid the SimObjectVector check.
#
self._dma_devices = [self.tsunami.ide, self.tsunami.ethernet]
self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(),
read_only = True))
self.intrctrl = IntrControl()
self.mem_mode = mem_mode
self.terminal = Terminal()
self.kernel = binary('vmlinux')
self.pal = binary('ts_osfpal')
self.console = binary('console')
self.boot_osflags = 'root=/dev/hda1 console=ttyS0'
return self
def makeSparcSystem(mem_mode, mdesc = None):
# Constants from iob.cc and uart8250.cc
iob_man_addr = 0x9800000000
uart_pio_size = 8
class CowMmDisk(MmDisk):
image = CowDiskImage(child=RawDiskImage(read_only=True),
read_only=False)
def childImage(self, ci):
self.image.child.image_file = ci
self = SparcSystem()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.iobus = Bus(bus_id=0)
self.membus = MemBus(bus_id=1)
self.bridge = Bridge(delay='50ns', nack_delay='4ns')
self.t1000 = T1000()
self.t1000.attachOnChipIO(self.membus)
self.t1000.attachIO(self.iobus)
self.physmem = PhysicalMemory(range = AddrRange(Addr('1MB'), size = '64MB'), zero = True)
self.physmem2 = PhysicalMemory(range = AddrRange(Addr('2GB'), size ='256MB'), zero = True)
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.physmem.port = self.membus.master
self.physmem2.port = self.membus.master
self.rom.port = self.membus.master
self.nvram.port = self.membus.master
self.hypervisor_desc.port = self.membus.master
self.partition_desc.port = self.membus.master
self.intrctrl = IntrControl()
self.disk0 = CowMmDisk()
self.disk0.childImage(disk('disk.s10hw2'))
self.disk0.pio = self.iobus.master
# The puart0 and hvuart are placed on the IO bus, so create ranges
# for them. The remaining IO range is rather fragmented, so poke
# holes for the iob and partition descriptors etc.
self.bridge.ranges = \
[
AddrRange(self.t1000.puart0.pio_addr,
self.t1000.puart0.pio_addr + uart_pio_size - 1),
AddrRange(self.disk0.pio_addr,
self.t1000.fake_jbi.pio_addr +
self.t1000.fake_jbi.pio_size - 1),
AddrRange(self.t1000.fake_clk.pio_addr,
iob_man_addr - 1),
AddrRange(self.t1000.fake_l2_1.pio_addr,
self.t1000.fake_ssi.pio_addr +
self.t1000.fake_ssi.pio_size - 1),
AddrRange(self.t1000.hvuart.pio_addr,
self.t1000.hvuart.pio_addr + uart_pio_size - 1)
]
self.reset_bin = binary('reset_new.bin')
self.hypervisor_bin = binary('q_new.bin')
self.openboot_bin = binary('openboot_new.bin')
self.nvram_bin = binary('nvram1')
self.hypervisor_desc_bin = binary('1up-hv.bin')
self.partition_desc_bin = binary('1up-md.bin')
self.system_port = self.membus.slave
return self
def makeArmSystem(mem_mode, machine_type, mdesc = None, bare_metal=False):
assert machine_type
if bare_metal:
self = ArmSystem()
else:
self = LinuxArmSystem()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.iobus = Bus(bus_id=0)
self.membus = MemBus(bus_id=1)
self.membus.badaddr_responder.warn_access = "warn"
self.bridge = Bridge(delay='50ns', nack_delay='4ns')
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.mem_mode = mem_mode
if machine_type == "RealView_PBX":
self.realview = RealViewPBX()
elif machine_type == "RealView_EB":
self.realview = RealViewEB()
elif machine_type == "VExpress_ELT":
self.realview = VExpress_ELT()
else:
print "Unknown Machine Type"
sys.exit(1)
self.cf0 = CowIdeDisk(driveID='master')
self.cf0.childImage(mdesc.disk())
# default to an IDE controller rather than a CF one
# assuming we've got one
try:
self.realview.ide.disks = [self.cf0]
except:
self.realview.cf_ctrl.disks = [self.cf0]
if bare_metal:
# EOT character on UART will end the simulation
self.realview.uart.end_on_eot = True
self.physmem = PhysicalMemory(range = AddrRange(Addr(mdesc.mem())),
zero = True)
else:
self.kernel = binary('vmlinux.arm.smp.fb.2.6.38.8')
self.machine_type = machine_type
if convert.toMemorySize(mdesc.mem()) > convert.toMemorySize('256MB'):
print "The currently implemented ARM platforms only easily support 256MB of DRAM"
print "It might be possible to get some more by using 256MB@0x30000000, but this"
print "is untested and may require some heroics"
boot_flags = 'earlyprintk console=ttyAMA0 lpj=19988480 norandmaps ' + \
'rw loglevel=8 mem=%s root=/dev/sda1' % mdesc.mem()
self.physmem = PhysicalMemory(range = AddrRange(Addr(mdesc.mem())),
zero = True)
self.nvmem = PhysicalMemory(range = AddrRange(Addr('2GB'),
size = '64MB'), zero = True)
self.nvmem.port = self.membus.master
self.boot_loader = binary('boot.arm')
self.boot_loader_mem = self.nvmem
self.gic_cpu_addr = self.realview.gic.cpu_addr
self.flags_addr = self.realview.realview_io.pio_addr + 0x30
if mdesc.disk().lower().count('android'):
boot_flags += " init=/init "
self.boot_osflags = boot_flags
self.physmem.port = self.membus.master
self.realview.attachOnChipIO(self.membus, self.bridge)
self.realview.attachIO(self.iobus)
self.intrctrl = IntrControl()
self.terminal = Terminal()
self.vncserver = VncServer()
self.system_port = self.membus.slave
return self
def makeLinuxMipsSystem(mem_mode, mdesc = None):
class BaseMalta(Malta):
ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0)
ide = IdeController(disks=[Parent.disk0, Parent.disk2],
pci_func=0, pci_dev=0, pci_bus=0)
self = LinuxMipsSystem()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.iobus = Bus(bus_id=0)
self.membus = MemBus(bus_id=1)
self.bridge = Bridge(delay='50ns', nack_delay='4ns')
self.physmem = PhysicalMemory(range = AddrRange('1GB'))
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.physmem.port = self.membus.master
self.disk0 = CowIdeDisk(driveID='master')
self.disk2 = CowIdeDisk(driveID='master')
self.disk0.childImage(mdesc.disk())
self.disk2.childImage(disk('linux-bigswap2.img'))
self.malta = BaseMalta()
self.malta.attachIO(self.iobus)
self.malta.ide.pio = self.iobus.master
self.malta.ide.config = self.iobus.master
self.malta.ide.dma = self.iobus.slave
self.malta.ethernet.pio = self.iobus.master
self.malta.ethernet.config = self.iobus.master
self.malta.ethernet.dma = self.iobus.slave
self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(),
read_only = True))
self.intrctrl = IntrControl()
self.mem_mode = mem_mode
self.terminal = Terminal()
self.kernel = binary('mips/vmlinux')
self.console = binary('mips/console')
self.boot_osflags = 'root=/dev/hda1 console=ttyS0'
self.system_port = self.membus.slave
return self
def x86IOAddress(port):
IO_address_space_base = 0x8000000000000000
return IO_address_space_base + port
def connectX86ClassicSystem(x86_sys, numCPUs):
# Constants similar to x86_traits.hh
IO_address_space_base = 0x8000000000000000
pci_config_address_space_base = 0xc000000000000000
interrupts_address_space_base = 0xa000000000000000
APIC_range_size = 1 << 12;
x86_sys.membus = MemBus(bus_id=1)
x86_sys.physmem.port = x86_sys.membus.master
# North Bridge
x86_sys.iobus = Bus(bus_id=0)
x86_sys.bridge = Bridge(delay='50ns', nack_delay='4ns')
x86_sys.bridge.master = x86_sys.iobus.slave
x86_sys.bridge.slave = x86_sys.membus.master
# Allow the bridge to pass through the IO APIC (two pages),
# everything in the IO address range up to the local APIC, and
# then the entire PCI address space and beyond
x86_sys.bridge.ranges = \
[
AddrRange(x86_sys.pc.south_bridge.io_apic.pio_addr,
x86_sys.pc.south_bridge.io_apic.pio_addr +
APIC_range_size - 1),
AddrRange(IO_address_space_base,
interrupts_address_space_base - 1),
AddrRange(pci_config_address_space_base,
Addr.max)
]
# Create a bridge from the IO bus to the memory bus to allow access to
# the local APIC (two pages)
x86_sys.apicbridge = Bridge(delay='50ns', nack_delay='4ns')
x86_sys.apicbridge.slave = x86_sys.iobus.master
x86_sys.apicbridge.master = x86_sys.membus.slave
x86_sys.apicbridge.ranges = [AddrRange(interrupts_address_space_base,
interrupts_address_space_base +
numCPUs * APIC_range_size
- 1)]
# connect the io bus
x86_sys.pc.attachIO(x86_sys.iobus)
x86_sys.system_port = x86_sys.membus.slave
def connectX86RubySystem(x86_sys):
# North Bridge
x86_sys.piobus = Bus(bus_id=0)
#
# Pio functional accesses from devices need direct access to memory
# RubyPort currently does support functional accesses. Therefore provide
# the piobus a direct connection to physical memory
#
x86_sys.piobus.master = x86_sys.physmem.port
x86_sys.pc.attachIO(x86_sys.piobus)
def makeX86System(mem_mode, numCPUs = 1, mdesc = None, self = None, Ruby = False):
if self == None:
self = X86System()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.mem_mode = mem_mode
# Physical memory
self.physmem = PhysicalMemory(range = AddrRange(mdesc.mem()))
# Platform
self.pc = Pc()
# Create and connect the busses required by each memory system
if Ruby:
connectX86RubySystem(self)
# add the ide to the list of dma devices that later need to attach to
# dma controllers
self._dma_devices = [self.pc.south_bridge.ide]
else:
connectX86ClassicSystem(self, numCPUs)
self.intrctrl = IntrControl()
# Disks
disk0 = CowIdeDisk(driveID='master')
disk2 = CowIdeDisk(driveID='master')
disk0.childImage(mdesc.disk())
disk2.childImage(disk('linux-bigswap2.img'))
self.pc.south_bridge.ide.disks = [disk0, disk2]
# Add in a Bios information structure.
structures = [X86SMBiosBiosInformation()]
self.smbios_table.structures = structures
# Set up the Intel MP table
base_entries = []
ext_entries = []
for i in xrange(numCPUs):
bp = X86IntelMPProcessor(
local_apic_id = i,
local_apic_version = 0x14,
enable = True,
bootstrap = (i == 0))
base_entries.append(bp)
io_apic = X86IntelMPIOAPIC(
id = numCPUs,
version = 0x11,
enable = True,
address = 0xfec00000)
self.pc.south_bridge.io_apic.apic_id = io_apic.id
base_entries.append(io_apic)
isa_bus = X86IntelMPBus(bus_id = 0, bus_type='ISA')
base_entries.append(isa_bus)
pci_bus = X86IntelMPBus(bus_id = 1, bus_type='PCI')
base_entries.append(pci_bus)
connect_busses = X86IntelMPBusHierarchy(bus_id=0,
subtractive_decode=True, parent_bus=1)
ext_entries.append(connect_busses)
pci_dev4_inta = X86IntelMPIOIntAssignment(
interrupt_type = 'INT',
polarity = 'ConformPolarity',
trigger = 'ConformTrigger',
source_bus_id = 1,
source_bus_irq = 0 + (4 << 2),
dest_io_apic_id = io_apic.id,
dest_io_apic_intin = 16)
base_entries.append(pci_dev4_inta)
def assignISAInt(irq, apicPin):
assign_8259_to_apic = X86IntelMPIOIntAssignment(
interrupt_type = 'ExtInt',
polarity = 'ConformPolarity',
trigger = 'ConformTrigger',
source_bus_id = 0,
source_bus_irq = irq,
dest_io_apic_id = io_apic.id,
dest_io_apic_intin = 0)
base_entries.append(assign_8259_to_apic)
assign_to_apic = X86IntelMPIOIntAssignment(
interrupt_type = 'INT',
polarity = 'ConformPolarity',
trigger = 'ConformTrigger',
source_bus_id = 0,
source_bus_irq = irq,
dest_io_apic_id = io_apic.id,
dest_io_apic_intin = apicPin)
base_entries.append(assign_to_apic)
assignISAInt(0, 2)
assignISAInt(1, 1)
for i in range(3, 15):
assignISAInt(i, i)
self.intel_mp_table.base_entries = base_entries
self.intel_mp_table.ext_entries = ext_entries
def setWorkCountOptions(system, options):
if options.work_item_id != None:
system.work_item_id = options.work_item_id
if options.work_begin_cpu_id_exit != None:
system.work_begin_cpu_id_exit = options.work_begin_cpu_id_exit
if options.work_end_exit_count != None:
system.work_end_exit_count = options.work_end_exit_count
if options.work_end_checkpoint_count != None:
system.work_end_ckpt_count = options.work_end_checkpoint_count
if options.work_begin_exit_count != None:
system.work_begin_exit_count = options.work_begin_exit_count
if options.work_begin_checkpoint_count != None:
system.work_begin_ckpt_count = options.work_begin_checkpoint_count
if options.work_cpus_checkpoint_count != None:
system.work_cpus_ckpt_count = options.work_cpus_checkpoint_count
def makeLinuxX86System(mem_mode, numCPUs = 1, mdesc = None, Ruby = False):
self = LinuxX86System()
# Build up the x86 system and then specialize it for Linux
makeX86System(mem_mode, numCPUs, mdesc, self, Ruby)
# We assume below that there's at least 1MB of memory. We'll require 2
# just to avoid corner cases.
assert(self.physmem.range.second.getValue() >= 0x200000)
self.e820_table.entries = \
[
# Mark the first megabyte of memory as reserved
X86E820Entry(addr = 0, size = '1MB', range_type = 2),
# Mark the rest as available
X86E820Entry(addr = 0x100000,
size = '%dB' % (self.physmem.range.second - 0x100000 + 1),
range_type = 1)
]
# Command line
self.boot_osflags = 'earlyprintk=ttyS0 console=ttyS0 lpj=7999923 ' + \
'root=/dev/hda1'
return self
def makeDualRoot(full_system, testSystem, driveSystem, dumpfile):
self = Root(full_system = full_system)
self.testsys = testSystem
self.drivesys = driveSystem
self.etherlink = EtherLink()
self.etherlink.int0 = Parent.testsys.tsunami.ethernet.interface
self.etherlink.int1 = Parent.drivesys.tsunami.ethernet.interface
if hasattr(testSystem, 'realview'):
self.etherlink.int0 = Parent.testsys.realview.ethernet.interface
self.etherlink.int1 = Parent.drivesys.realview.ethernet.interface
elif hasattr(testSystem, 'tsunami'):
self.etherlink.int0 = Parent.testsys.tsunami.ethernet.interface
self.etherlink.int1 = Parent.drivesys.tsunami.ethernet.interface
else:
fatal("Don't know how to connect these system together")
if dumpfile:
self.etherdump = EtherDump(file=dumpfile)
self.etherlink.dump = Parent.etherdump
return self
def setMipsOptions(TestCPUClass):
#CP0 Configuration
TestCPUClass.CoreParams.CP0_PRId_CompanyOptions = 0
TestCPUClass.CoreParams.CP0_PRId_CompanyID = 1
TestCPUClass.CoreParams.CP0_PRId_ProcessorID = 147
TestCPUClass.CoreParams.CP0_PRId_Revision = 0
#CP0 Interrupt Control
TestCPUClass.CoreParams.CP0_IntCtl_IPTI = 7
TestCPUClass.CoreParams.CP0_IntCtl_IPPCI = 7
# Config Register
#TestCPUClass.CoreParams.CP0_Config_K23 = 0 # Since TLB
#TestCPUClass.CoreParams.CP0_Config_KU = 0 # Since TLB
TestCPUClass.CoreParams.CP0_Config_BE = 0 # Little Endian
TestCPUClass.CoreParams.CP0_Config_AR = 1 # Architecture Revision 2
TestCPUClass.CoreParams.CP0_Config_AT = 0 # MIPS32
TestCPUClass.CoreParams.CP0_Config_MT = 1 # TLB MMU
#TestCPUClass.CoreParams.CP0_Config_K0 = 2 # Uncached
#Config 1 Register
TestCPUClass.CoreParams.CP0_Config1_M = 1 # Config2 Implemented
TestCPUClass.CoreParams.CP0_Config1_MMU = 63 # TLB Size
# ***VERY IMPORTANT***
# Remember to modify CP0_Config1 according to cache specs
# Examine file ../common/Cache.py
TestCPUClass.CoreParams.CP0_Config1_IS = 1 # I-Cache Sets Per Way, 16KB cache, i.e., 1 (128)
TestCPUClass.CoreParams.CP0_Config1_IL = 5 # I-Cache Line Size, default in Cache.py is 64, i.e 5
TestCPUClass.CoreParams.CP0_Config1_IA = 1 # I-Cache Associativity, default in Cache.py is 2, i.e, a value of 1
TestCPUClass.CoreParams.CP0_Config1_DS = 2 # D-Cache Sets Per Way (see below), 32KB cache, i.e., 2
TestCPUClass.CoreParams.CP0_Config1_DL = 5 # D-Cache Line Size, default is 64, i.e., 5
TestCPUClass.CoreParams.CP0_Config1_DA = 1 # D-Cache Associativity, default is 2, i.e. 1
TestCPUClass.CoreParams.CP0_Config1_C2 = 0 # Coprocessor 2 not implemented(?)
TestCPUClass.CoreParams.CP0_Config1_MD = 0 # MDMX ASE not implemented in Mips32
TestCPUClass.CoreParams.CP0_Config1_PC = 1 # Performance Counters Implemented
TestCPUClass.CoreParams.CP0_Config1_WR = 0 # Watch Registers Implemented
TestCPUClass.CoreParams.CP0_Config1_CA = 0 # Mips16e NOT implemented
TestCPUClass.CoreParams.CP0_Config1_EP = 0 # EJTag Not Implemented
TestCPUClass.CoreParams.CP0_Config1_FP = 0 # FPU Implemented
#Config 2 Register
TestCPUClass.CoreParams.CP0_Config2_M = 1 # Config3 Implemented
TestCPUClass.CoreParams.CP0_Config2_TU = 0 # Tertiary Cache Control
TestCPUClass.CoreParams.CP0_Config2_TS = 0 # Tertiary Cache Sets Per Way
TestCPUClass.CoreParams.CP0_Config2_TL = 0 # Tertiary Cache Line Size
TestCPUClass.CoreParams.CP0_Config2_TA = 0 # Tertiary Cache Associativity
TestCPUClass.CoreParams.CP0_Config2_SU = 0 # Secondary Cache Control
TestCPUClass.CoreParams.CP0_Config2_SS = 0 # Secondary Cache Sets Per Way
TestCPUClass.CoreParams.CP0_Config2_SL = 0 # Secondary Cache Line Size
TestCPUClass.CoreParams.CP0_Config2_SA = 0 # Secondary Cache Associativity
#Config 3 Register
TestCPUClass.CoreParams.CP0_Config3_M = 0 # Config4 Not Implemented
TestCPUClass.CoreParams.CP0_Config3_DSPP = 1 # DSP ASE Present
TestCPUClass.CoreParams.CP0_Config3_LPA = 0 # Large Physical Addresses Not supported in Mips32
TestCPUClass.CoreParams.CP0_Config3_VEIC = 0 # EIC Supported
TestCPUClass.CoreParams.CP0_Config3_VInt = 0 # Vectored Interrupts Implemented
TestCPUClass.CoreParams.CP0_Config3_SP = 0 # Small Pages Supported (PageGrain reg. exists)
TestCPUClass.CoreParams.CP0_Config3_MT = 0 # MT Not present
TestCPUClass.CoreParams.CP0_Config3_SM = 0 # SmartMIPS ASE Not implemented
TestCPUClass.CoreParams.CP0_Config3_TL = 0 # TraceLogic Not implemented
#SRS Ctl - HSS
TestCPUClass.CoreParams.CP0_SrsCtl_HSS = 3 # Four shadow register sets implemented
#TestCPUClass.CoreParams.tlb = TLB()
#TestCPUClass.CoreParams.UnifiedTLB = 1