gem5/src/arch/x86/types.hh
Brandon Potter 2367198921 syscall_emul: [PATCH 15/22] add clone/execve for threading and multiprocess simulations
Modifies the clone system call and adds execve system call. Requires allowing
processes to steal thread contexts from other processes in the same system
object and the ability to detach pieces of process state (such as MemState)
to allow dynamic sharing.
2017-02-27 14:10:15 -05:00

385 lines
11 KiB
C++

/*
* Copyright (c) 2007 The Hewlett-Packard Development Company
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#ifndef __ARCH_X86_TYPES_HH__
#define __ARCH_X86_TYPES_HH__
#include <iostream>
#include "arch/generic/types.hh"
#include "base/bitunion.hh"
#include "base/cprintf.hh"
#include "base/types.hh"
#include "sim/serialize.hh"
namespace X86ISA
{
//This really determines how many bytes are passed to the decoder.
typedef uint64_t MachInst;
enum Prefixes {
NoOverride,
ESOverride,
CSOverride,
SSOverride,
DSOverride,
FSOverride,
GSOverride,
RexPrefix,
OperandSizeOverride,
AddressSizeOverride,
Lock,
Rep,
Repne,
Vex2Prefix,
Vex3Prefix,
XopPrefix,
};
BitUnion8(LegacyPrefixVector)
Bitfield<7, 4> decodeVal;
Bitfield<7> repne;
Bitfield<6> rep;
Bitfield<5> lock;
Bitfield<4> op;
Bitfield<3> addr;
//There can be only one segment override, so they share the
//first 3 bits in the legacyPrefixes bitfield.
Bitfield<2,0> seg;
EndBitUnion(LegacyPrefixVector)
BitUnion8(ModRM)
Bitfield<7,6> mod;
Bitfield<5,3> reg;
Bitfield<2,0> rm;
EndBitUnion(ModRM)
BitUnion8(Sib)
Bitfield<7,6> scale;
Bitfield<5,3> index;
Bitfield<2,0> base;
EndBitUnion(Sib)
BitUnion8(Rex)
//This bit doesn't mean anything according to the ISA, but in
//this implementation, it being set means an REX prefix was present.
Bitfield<6> present;
Bitfield<3> w;
Bitfield<2> r;
Bitfield<1> x;
Bitfield<0> b;
EndBitUnion(Rex)
BitUnion(uint32_t, ThreeByteVex)
Bitfield<7,0> zero;
SubBitUnion(first, 15, 8)
// Inverted one-bit extension of ModRM reg field
Bitfield<15> r;
// Inverted one-bit extension of SIB index field
Bitfield<14> x;
// Inverted one-bit extension, r/m field or SIB base field
Bitfield<13> b;
// Opcode map select
Bitfield<12, 8> map_select;
EndSubBitUnion(first)
SubBitUnion(second, 23, 16)
// Default operand size override for a general purpose register to
// 64-bit size in 64-bit mode; operand configuration specifier for
// certain YMM/XMM-based operations.
Bitfield<23> w;
// Source or destination register selector, in ones' complement
// format
Bitfield<22, 19> vvvv;
// Vector length specifier
Bitfield<18> l;
// Implied 66, F2, or F3 opcode extension
Bitfield<17, 16> pp;
EndSubBitUnion(second)
EndBitUnion(ThreeByteVex)
BitUnion16(TwoByteVex)
Bitfield<7,0> zero;
SubBitUnion(first, 15, 8)
// Inverted one-bit extension of ModRM reg field
Bitfield<15> r;
// Source or destination register selector, in ones' complement
// format
Bitfield<14, 11> vvvv;
// Vector length specifier
Bitfield<10> l;
// Implied 66, F2, or F3 opcode extension
Bitfield<9, 8> pp;
EndSubBitUnion(first)
EndBitUnion(TwoByteVex)
enum OpcodeType {
BadOpcode,
OneByteOpcode,
TwoByteOpcode,
ThreeByte0F38Opcode,
ThreeByte0F3AOpcode,
Vex,
};
static inline const char *
opcodeTypeToStr(OpcodeType type)
{
switch (type) {
case BadOpcode:
return "bad";
case OneByteOpcode:
return "one byte";
case TwoByteOpcode:
return "two byte";
case ThreeByte0F38Opcode:
return "three byte 0f38";
case ThreeByte0F3AOpcode:
return "three byte 0f3a";
case Vex:
return "vex";
default:
return "unrecognized!";
}
}
BitUnion8(Opcode)
Bitfield<7,3> top5;
Bitfield<2,0> bottom3;
EndBitUnion(Opcode)
BitUnion8(OperatingMode)
Bitfield<3> mode;
Bitfield<2,0> submode;
EndBitUnion(OperatingMode)
enum X86Mode {
LongMode,
LegacyMode
};
enum X86SubMode {
SixtyFourBitMode,
CompatabilityMode,
ProtectedMode,
Virtual8086Mode,
RealMode
};
//The intermediate structure used by the x86 decoder.
struct ExtMachInst
{
//Prefixes
LegacyPrefixVector legacy;
Rex rex;
// We use the following field for encoding both two byte and three byte
// escape sequences
ThreeByteVex vex;
//This holds all of the bytes of the opcode
struct
{
OpcodeType type;
//The main opcode byte. The highest addressed byte in the opcode.
Opcode op;
} opcode;
//Modifier bytes
ModRM modRM;
Sib sib;
//Immediate fields
uint64_t immediate;
uint64_t displacement;
//The effective operand size.
uint8_t opSize;
//The effective address size.
uint8_t addrSize;
//The effective stack size.
uint8_t stackSize;
//The size of the displacement
uint8_t dispSize;
//Mode information
OperatingMode mode;
};
inline static std::ostream &
operator << (std::ostream & os, const ExtMachInst & emi)
{
ccprintf(os, "\n{\n\tleg = %#x,\n\trex = %#x,\n\t"
"vex/xop = %#x,\n\t"
"op = {\n\t\ttype = %s,\n\t\top = %#x,\n\t\t},\n\t"
"modRM = %#x,\n\tsib = %#x,\n\t"
"immediate = %#x,\n\tdisplacement = %#x\n\t"
"dispSize = %d}\n",
(uint8_t)emi.legacy, (uint8_t)emi.rex,
(uint32_t)emi.vex,
opcodeTypeToStr(emi.opcode.type), (uint8_t)emi.opcode.op,
(uint8_t)emi.modRM, (uint8_t)emi.sib,
emi.immediate, emi.displacement, emi.dispSize);
return os;
}
inline static bool
operator == (const ExtMachInst &emi1, const ExtMachInst &emi2)
{
if (emi1.legacy != emi2.legacy)
return false;
if (emi1.rex != emi2.rex)
return false;
if (emi1.opcode.type != emi2.opcode.type)
return false;
if (emi1.opcode.op != emi2.opcode.op)
return false;
if (emi1.modRM != emi2.modRM)
return false;
if (emi1.sib != emi2.sib)
return false;
if (emi1.immediate != emi2.immediate)
return false;
if (emi1.displacement != emi2.displacement)
return false;
if (emi1.mode != emi2.mode)
return false;
if (emi1.opSize != emi2.opSize)
return false;
if (emi1.addrSize != emi2.addrSize)
return false;
if (emi1.stackSize != emi2.stackSize)
return false;
if (emi1.dispSize != emi2.dispSize)
return false;
return true;
}
class PCState : public GenericISA::UPCState<MachInst>
{
protected:
typedef GenericISA::UPCState<MachInst> Base;
uint8_t _size;
public:
void
set(Addr val)
{
Base::set(val);
_size = 0;
}
PCState() {}
PCState(Addr val) { set(val); }
void
setNPC(Addr val)
{
Base::setNPC(val);
_size = 0;
}
uint8_t size() const { return _size; }
void size(uint8_t newSize) { _size = newSize; }
bool
branching() const
{
return this->npc() != this->pc() + size();
}
void
advance()
{
Base::advance();
_size = 0;
}
void
uEnd()
{
Base::uEnd();
_size = 0;
}
void
serialize(CheckpointOut &cp) const
{
Base::serialize(cp);
SERIALIZE_SCALAR(_size);
}
void
unserialize(CheckpointIn &cp)
{
Base::unserialize(cp);
UNSERIALIZE_SCALAR(_size);
}
};
}
namespace std {
template<>
struct hash<X86ISA::ExtMachInst> {
size_t operator()(const X86ISA::ExtMachInst &emi) const {
return (((uint64_t)emi.legacy << 40) |
((uint64_t)emi.rex << 32) |
((uint64_t)emi.modRM << 24) |
((uint64_t)emi.sib << 16) |
((uint64_t)emi.opcode.type << 8) |
((uint64_t)emi.opcode.op)) ^
emi.immediate ^ emi.displacement ^
emi.mode ^
emi.opSize ^ emi.addrSize ^
emi.stackSize ^ emi.dispSize;
};
};
}
// These two functions allow ExtMachInst to be used with SERIALIZE_SCALAR
// and UNSERIALIZE_SCALAR.
template <>
void
paramOut(CheckpointOut &cp, const std::string &name,
const X86ISA::ExtMachInst &machInst);
template <>
void
paramIn(CheckpointIn &cp, const std::string &name,
X86ISA::ExtMachInst &machInst);
#endif // __ARCH_X86_TYPES_HH__