gem5/src/arch/x86/isa/decoder/two_byte_opcodes.isa
Brandon Potter a5802c823f syscall_emul: [patch 13/22] add system call retry capability
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).

This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.

To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.

The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.

In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.

As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
2015-07-20 09:15:21 -05:00

1078 lines
41 KiB
Plaintext

// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
// Copyright (c) 2012-2013 AMD
// All rights reserved.
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Copyright (c) 2008 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
////////////////////////////////////////////////////////////////////
//
// Decode the two byte opcodes
//
'X86ISA::TwoByteOpcode': decode OPCODE_OP_TOP5 {
format WarnUnimpl {
0x00: decode OPCODE_OP_BOTTOM3 {
//0x00: group6();
0x00: decode MODRM_REG {
0x0: sldt_Mw_or_Rv();
0x1: str_Mw_or_Rv();
0x2: Inst::LLDT(Ew);
0x3: Inst::LTR(Ew);
0x4: verr_Mw_or_Rv();
0x5: verw_Mw_or_Rv();
//0x6: jmpe_Ev(); // IA-64
default: Inst::UD2();
}
//0x01: group7(); // Ugly, ugly, ugly...
0x01: decode MODRM_REG {
0x0: decode MODRM_MOD {
0x3: decode MODRM_RM {
0x1: vmcall();
0x2: vmlaunch();
0x3: vmresume();
0x4: vmxoff();
default: Inst::UD2();
}
default: sgdt_Ms();
}
0x1: decode MODRM_MOD {
0x3: decode MODRM_RM {
0x0: MonitorInst::monitor({{
xc->armMonitor(Rax);
}});
0x1: MwaitInst::mwait({{
uint64_t m = 0; //mem
unsigned s = 0x8; //size
unsigned f = 0; //flags
readMemAtomic(xc, traceData,
xc->getAddrMonitor()->vAddr,
m, s, f);
xc->mwaitAtomic(xc->tcBase());
MicroHalt hltObj(machInst, mnemonic, 0x0);
hltObj.execute(xc, traceData);
}});
default: Inst::UD2();
}
default: sidt_Ms();
}
0x2: decode MODRM_MOD {
0x3: decode MODRM_RM {
0x0: xgetbv();
0x1: xsetbv();
}
default: decode MODE_SUBMODE {
0x0: Inst::LGDT(M);
default: decode OPSIZE {
// 16 bit operand sizes are special, but only
// in legacy and compatability modes.
0x2: Inst::LGDT_16(M);
default: Inst::LGDT(M);
}
}
}
0x3: decode MODRM_MOD {
0x3: decode MODRM_RM {
0x0: vmrun();
0x1: vmmcall();
0x2: vmload();
0x3: vmsave();
0x4: stgi();
0x5: clgi();
0x6: skinit();
0x7: invlpga();
}
default: decode MODE_SUBMODE {
0x0: Inst::LIDT(M);
default: decode OPSIZE {
// 16 bit operand sizes are special, but only
// in legacy and compatability modes.
0x2: Inst::LIDT_16(M);
default: Inst::LIDT(M);
}
}
}
0x4: decode MODRM_MOD {
0x3: Inst::SMSW(Rv);
default: Inst::SMSW(Mw);
}
0x6: Inst::LMSW(Ew);
0x7: decode MODRM_MOD {
0x3: decode MODRM_RM {
0x0: Inst::SWAPGS();
0x1: rdtscp();
default: Inst::UD2();
}
default: Inst::INVLPG(M);
}
}
0x02: lar_Gv_Ew();
0x03: lsl_Gv_Ew();
// sandpile.org doesn't seem to know what this is...? We'll
// use it for pseudo instructions. We've got 16 bits of space
// to play with so there can be quite a few pseudo
// instructions.
//0x04: loadall_or_reset_or_hang();
0x4: decode IMMEDIATE {
format BasicOperate {
0x00: m5arm({{
PseudoInst::arm(xc->tcBase());
}}, IsNonSpeculative);
0x01: m5quiesce({{
PseudoInst::quiesce(xc->tcBase());
}}, IsNonSpeculative, IsQuiesce);
0x02: m5quiesceNs({{
PseudoInst::quiesceNs(xc->tcBase(), Rdi);
}}, IsNonSpeculative, IsQuiesce);
0x03: m5quiesceCycle({{
PseudoInst::quiesceCycles(xc->tcBase(), Rdi);
}}, IsNonSpeculative, IsQuiesce);
0x04: m5quiesceTime({{
Rax = PseudoInst::quiesceTime(xc->tcBase());
}}, IsNonSpeculative);
0x07: m5rpns({{
Rax = PseudoInst::rpns(xc->tcBase());
}}, IsNonSpeculative);
0x21: m5exit({{
PseudoInst::m5exit(xc->tcBase(), Rdi);
}}, IsNonSpeculative);
0x22: m5fail({{
PseudoInst::m5fail(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x30: m5initparam({{
Rax = PseudoInst::initParam(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x31: m5loadsymbol({{
PseudoInst::loadsymbol(xc->tcBase());
}}, IsNonSpeculative);
0x40: m5resetstats({{
PseudoInst::resetstats(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x41: m5dumpstats({{
PseudoInst::dumpstats(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x42: m5dumpresetstats({{
PseudoInst::dumpresetstats(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x43: m5checkpoint({{
PseudoInst::m5checkpoint(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x50: m5readfile({{
Rax = PseudoInst::readfile(
xc->tcBase(), Rdi, Rsi, Rdx);
}}, IsNonSpeculative);
0x51: m5debugbreak({{
PseudoInst::debugbreak(xc->tcBase());
}}, IsNonSpeculative);
0x52: m5switchcpu({{
PseudoInst::switchcpu(xc->tcBase());
}}, IsNonSpeculative);
0x53: m5addsymbol({{
PseudoInst::addsymbol(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x54: m5panic({{
panic("M5 panic instruction called at pc = %#x.\n",
RIP);
}}, IsNonSpeculative);
0x55: m5reserved1({{
warn("M5 reserved opcode 1 ignored.\n");
}}, IsNonSpeculative);
0x56: m5reserved2({{
warn("M5 reserved opcode 2 ignored.\n");
}}, IsNonSpeculative);
0x57: m5reserved3({{
warn("M5 reserved opcode 3 ignored.\n");
}}, IsNonSpeculative);
0x58: m5reserved4({{
warn("M5 reserved opcode 4 ignored.\n");
}}, IsNonSpeculative);
0x59: m5reserved5({{
warn("M5 reserved opcode 5 ignored.\n");
}}, IsNonSpeculative);
0x5a: m5_work_begin({{
PseudoInst::workbegin(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x5b: m5_work_end({{
PseudoInst::workend(xc->tcBase(), Rdi, Rsi);
}}, IsNonSpeculative);
0x62: m5togglesync({{
PseudoInst::togglesync(xc->tcBase());
}}, IsNonSpeculative, IsQuiesce);
default: Inst::UD2();
}
}
0x05: decode FullSystemInt {
0: SyscallInst::syscall('xc->syscall(Rax, &fault)',
IsSyscall, IsNonSpeculative,
IsSerializeAfter);
default: decode MODE_MODE {
0x0: decode MODE_SUBMODE {
0x0: Inst::SYSCALL_64();
0x1: Inst::SYSCALL_COMPAT();
}
0x1: Inst::SYSCALL_LEGACY();
}
}
0x06: Inst::CLTS();
0x07: decode MODE_SUBMODE {
0x0: decode OPSIZE {
// Return to 64 bit mode.
0x8: Inst::SYSRET_TO_64();
// Return to compatibility mode.
default: Inst::SYSRET_TO_COMPAT();
}
default: Inst::SYSRET_NON_64();
}
}
0x01: decode OPCODE_OP_BOTTOM3 {
0x0: invd();
0x1: wbinvd();
0x2: Inst::UD2();
0x3: Inst::UD2();
0x4: Inst::UD2();
0x5: Inst::PREFETCH(Mb);
0x6: FailUnimpl::femms();
0x7: decode IMMEDIATE {
0x0C: pi2fw_Pq_Qq();
0x0D: pi2fd_Pq_Qq();
0x1C: pf2iw_Pq_Qq();
0x1D: pf2id_Pq_Qq();
0x8A: pfnacc_Pq_Qq();
0x8E: pfpnacc_Pq_Qq();
0x90: pfcmpge_Pq_Qq();
0x94: pfmin_Pq_Qq();
0x96: pfrcp_Pq_Qq();
0x97: pfrsqrt_Pq_Qq();
0x9A: Inst::PFSUB(Pq,Qq);
0x9E: pfadd_Pq_Qq();
0xA0: pfcmpgt_Pq_Qq();
0xA4: pfmax_Pq_Qq();
0xA6: pfrcpit1_Pq_Qq();
0xA7: pfrsqit1_Pq_Qq();
0xAA: Inst::PFSUBR(Pq,Qq);
0xAE: pfacc_Pq_Qq();
0xB0: pfcmpeq_Pq_Qq();
0xB4: Inst::PFMUL(Pq,Qq);
0xB6: pfrcpit2_Pq_Qq();
0xB7: Inst::PMULHRW(Pq,Qq);
0xBB: pswapd_Pq_Qq();
0xBF: pavgusb_Pq_Qq();
default: Inst::UD2();
}
}
format Inst{
0x02: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: MOVUPS(Vo,Wo);
0x1: MOVUPS(Wo,Vo);
0x2: decode MODRM_MOD {
0x3: MOVHLPS(Vps,VRq);
default: MOVLPS(Vps,Mq);
}
0x3: MOVLPS(Mq,Vps);
0x4: UNPCKLPS(Vps,Wq);
0x5: UNPCKHPS(Vps,Wq);
0x6: decode MODRM_MOD {
0x3: MOVLHPS(Vps,VRq);
default: MOVHPS(Vps,Mq);
}
0x7: MOVHPS(Mq,Vq);
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x0: MOVSS(Vd,Wd);
0x1: MOVSS(Wd,Vd);
0x2: WarnUnimpl::movsldup_Vo_Wo();
0x6: WarnUnimpl::movshdup_Vo_Wo();
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: MOVUPD(Vo,Wo);
0x1: MOVUPD(Wo,Vo);
0x2: MOVLPD(Vq,Mq);
0x3: MOVLPD(Mq,Vq);
0x4: UNPCKLPD(Vo,Wq);
0x5: UNPCKHPD(Vo,Wo);
0x6: MOVHPD(Vq,Mq);
0x7: MOVHPD(Mq,Vq);
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x0: MOVSD(Vq,Wq);
0x1: MOVSD(Wq,Vq);
0x2: MOVDDUP(Vo,Wq);
default: UD2();
}
default: UD2();
}
0x03: decode OPCODE_OP_BOTTOM3 {
//group16();
0x0: decode MODRM_REG {
0x0: WarnUnimpl::prefetch_nta();
0x1: PREFETCH_T0(Mb);
0x2: WarnUnimpl::prefetch_t1();
0x3: WarnUnimpl::prefetch_t2();
default: HINT_NOP();
}
0x1: HINT_NOP();
0x2: HINT_NOP();
0x3: HINT_NOP();
0x4: HINT_NOP();
0x5: HINT_NOP();
0x6: HINT_NOP();
0x7: HINT_NOP();
}
0x04: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: MOV(Rd,Cd);
0x1: MOV(Rd,Dd);
0x2: MOV(Cd,Rd);
0x3: MOV(Dd,Rd);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: MOV(Rd,Cd);
0x2: MOV(Cd,Rd);
}
default: UD2();
}
0x05: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
//These moves should really use size o (octword), but
//because they are split in two, they use q (quadword).
0x0: MOVAPS(Vq,Wq);
0x1: MOVAPS(Wq,Vq);
0x2: CVTPI2PS(Vq,Qq);
0x3: WarnUnimpl::movntps_Mo_Vo();
0x4: CVTTPS2PI(Pq,Wq);
0x5: CVTPS2PI(Pq,Wq);
0x6: UCOMISS(Vd,Wd);
0x7: COMISS(Vd,Wd);
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x2: CVTSI2SS(Vd,Ed);
0x4: CVTTSS2SI(Gd,Wd);
0x5: CVTSS2SI(Gd,Wd);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: MOVAPD(Vo,Wo);
0x1: MOVAPD(Wo,Vo);
0x2: CVTPI2PD(Vo,Qq);
0x3: WarnUnimpl::movntpd_Mo_Vo();
0x4: CVTTPD2PI(Pq,Wo);
0x5: CVTPD2PI(Pq,Wo);
0x6: UCOMISD(Vq,Wq);
0x7: COMISD(Vq,Wq);
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
// The size of the V operand should be q, not dp
0x2: CVTSI2SD(Vdp,Edp);
// The size of the W operand should be q, not dp
0x4: CVTTSD2SI(Gdp,Wdp);
0x5: CVTSD2SI(Gd,Wq);
default: UD2();
}
default: UD2();
}
}
0x06: decode OPCODE_OP_BOTTOM3 {
0x0: Inst::WRMSR();
0x1: Inst::RDTSC();
0x2: Inst::RDMSR();
0x3: rdpmc();
0x4: decode FullSystemInt {
0: SyscallInst::sysenter('xc->syscall(Rax, &fault)',
IsSyscall, IsNonSpeculative,
IsSerializeAfter);
default: sysenter();
}
0x5: sysexit();
0x6: Inst::UD2();
0x7: getsec();
}
0x07: decode OPCODE_OP_BOTTOM3 {
0x0: M5InternalError::error(
{{"Three byte opcode shouldn't be handled by "
"two_byte_opcodes.isa!"}});
0x2: M5InternalError::error(
{{"Three byte opcode shouldn't be handled by "
"two_byte_opcodes.isa!"}});
default: UD2();
}
format Inst {
0x08: decode OPCODE_OP_BOTTOM3 {
0x0: CMOVO(Gv,Ev);
0x1: CMOVNO(Gv,Ev);
0x2: CMOVB(Gv,Ev);
0x3: CMOVNB(Gv,Ev);
0x4: CMOVZ(Gv,Ev);
0x5: CMOVNZ(Gv,Ev);
0x6: CMOVBE(Gv,Ev);
0x7: CMOVNBE(Gv,Ev);
}
0x09: decode OPCODE_OP_BOTTOM3 {
0x0: CMOVS(Gv,Ev);
0x1: CMOVNS(Gv,Ev);
0x2: CMOVP(Gv,Ev);
0x3: CMOVNP(Gv,Ev);
0x4: CMOVL(Gv,Ev);
0x5: CMOVNL(Gv,Ev);
0x6: CMOVLE(Gv,Ev);
0x7: CMOVNLE(Gv,Ev);
}
0x0A: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: MOVMSKPS(Gd,VRo);
0x1: SQRTPS(Vo,Wo);
0x2: WarnUnimpl::rqsrtps_Vo_Wo();
0x3: RCPPS(Vo,Wo);
0x4: ANDPS(Vo,Wo);
0x5: ANDNPS(Vo,Wo);
0x6: ORPS(Vo,Wo);
0x7: XORPS(Vo,Wo);
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x1: SQRTSS(Vd,Wd);
0x2: WarnUnimpl::rsqrtss_Vd_Wd();
0x3: RCPSS(Vd,Wd);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: MOVMSKPD(Gd,VRo);
0x1: SQRTPD(Vo,Wo);
0x4: ANDPD(Vo,Wo);
0x5: ANDNPD(Vo,Wo);
0x6: ORPD(Vo,Wo);
0x7: XORPD(Vo,Wo);
default: UD2();
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x1: SQRTSD(Vq,Wq);
default: UD2();
}
default: UD2();
}
0x0B: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: ADDPS(Vo,Wo);
0x1: MULPS(Vo,Wo);
0x2: CVTPS2PD(Vo,Wq);
0x3: CVTDQ2PS(Vo,Wo);
0x4: SUBPS(Vo,Wo);
0x5: MINPS(Vo,Wo);
0x6: DIVPS(Vo,Wo);
0x7: MAXPS(Vo,Wo);
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x0: ADDSS(Vd,Wd);
0x1: MULSS(Vd,Wd);
0x2: CVTSS2SD(Vq,Wd);
0x3: CVTTPS2DQ(Vo,Wo);
0x4: SUBSS(Vd,Wd);
0x5: MINSS(Vd,Wd);
0x6: DIVSS(Vd,Wd);
0x7: MAXSS(Vd,Wd);
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: ADDPD(Vo,Wo);
0x1: MULPD(Vo,Wo);
0x2: CVTPD2PS(Vo,Wo);
0x3: CVTPS2DQ(Vo,Wo);
0x4: SUBPD(Vo,Wo);
0x5: MINPD(Vo,Wo);
0x6: DIVPD(Vo,Wo);
0x7: MAXPD(Vo,Wo);
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x0: ADDSD(Vq,Wq);
0x1: MULSD(Vq,Wq);
0x2: CVTSD2SS(Vd,Wq);
0x4: SUBSD(Vq,Wq);
0x5: MINSD(Vq,Wq);
0x6: DIVSD(Vq,Wq);
0x7: MAXSD(Vq,Wq);
default: UD2();
}
default: UD2();
}
0x0C: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: PUNPCKLBW(Pq,Qd);
0x1: PUNPCKLWD(Pq,Qd);
0x2: PUNPCKLDQ(Pq,Qd);
0x3: PACKSSWB(Pq,Qq);
0x4: PCMPGTB(Pq,Qq);
0x5: PCMPGTW(Pq,Qq);
0x6: PCMPGTD(Pq,Qq);
0x7: PACKUSWB(Pq,Qq);
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: PUNPCKLBW(Vo,Wq);
0x1: PUNPCKLWD(Vo,Wq);
0x2: PUNPCKLDQ(Vo,Wq);
0x3: PACKSSWB(Vo,Wo);
0x4: PCMPGTB(Vo,Wo);
0x5: PCMPGTW(Vo,Wo);
0x6: PCMPGTD(Vo,Wo);
0x7: PACKUSWB(Vo,Wo);
}
default: UD2();
}
0x0D: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: PUNPCKHBW(Pq,Qq);
0x1: PUNPCKHWD(Pq,Qq);
0x2: PUNPCKHDQ(Pq,Qq);
0x3: PACKSSDW(Pq,Qq);
0x6: MOVD(Pq,Edp);
0x7: MOVQ(Pq,Qq);
default: UD2();
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x7: MOVDQU(Vo,Wo);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: PUNPCKHBW(Vo,Wo);
0x1: PUNPCKHWD(Vo,Wo);
0x2: PUNPCKHDQ(Vo,Wo);
0x3: PACKSSDW(Vo,Wo);
0x4: PUNPCKLQDQ(Vo,Wq);
0x5: PUNPCKHQDQ(Vo,Wq);
0x6: MOVD(Vo,Edp);
0x7: MOVDQA(Vo,Wo);
}
default: UD2();
}
0x0E: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: PSHUFW(Pq,Qq,Ib);
//0x1: group12_pshimw();
0x1: decode MODRM_REG {
0x2: PSRLW(PRq,Ib);
0x4: PSRAW(PRq,Ib);
0x6: PSLLW(PRq,Ib);
default: UD2();
}
//0x2: group13_pshimd();
0x2: decode MODRM_REG {
0x2: PSRLD(PRq,Ib);
0x4: PSRAD(PRq,Ib);
0x6: PSLLD(PRq,Ib);
default: UD2();
}
//0x3: group14_pshimq();
0x3: decode MODRM_REG {
0x2: PSRLQ(PRq,Ib);
0x6: PSLLQ(PRq,Ib);
default: Inst::UD2();
}
0x4: Inst::PCMPEQB(Pq,Qq);
0x5: Inst::PCMPEQW(Pq,Qq);
0x6: Inst::PCMPEQD(Pq,Qq);
0x7: Inst::EMMS();
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x0: PSHUFHW(Vo,Wo,Ib);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: PSHUFD(Vo,Wo,Ib);
//0x1: group12_pshimw();
0x1: decode MODRM_REG {
0x2: PSRLW(VRo,Ib);
0x4: PSRAW(VRo,Ib);
0x6: PSLLW(VRo,Ib);
}
//0x2: group13_pshimd();
0x2: decode MODRM_REG {
0x2: PSRLD(VRo,Ib);
0x4: PSRAD(VRo,Ib);
0x6: PSLLD(VRo,Ib);
default: UD2();
}
//0x3: group14_pshimq();
0x3: decode MODRM_REG {
0x2: PSRLQ(VRo,Ib);
0x3: PSRLDQ(VRo,Ib);
0x6: PSLLQ(VRo,Ib);
0x7: PSLLDQ(VRo,Ib);
default: UD2();
}
0x4: PCMPEQB(Vo,Wo);
0x5: PCMPEQW(Vo,Wo);
0x6: PCMPEQD(Vo,Wo);
default: UD2();
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x0: PSHUFLW(Vo,Wo,Ib);
default: UD2();
}
default: UD2();
}
0x0F: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: WarnUnimpl::vmread_Edp_Gdp();
0x1: WarnUnimpl::vmwrite_Gdp_Edp();
0x6: MOVD(Edp,Pdp);
0x7: MOVQ(Qq,Pq);
default: UD2();
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x6: MOVQ(Vq,Wq);
0x7: MOVDQU(Wo,Vo);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x4: HADDPD(Vo,Wo);
0x5: WarnUnimpl::hsubpd_Vo_Wo();
0x6: MOVD(Edp,Vd);
0x7: MOVDQA(Wo,Vo);
default: UD2();
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x4: HADDPS(Vo,Wo);
0x5: WarnUnimpl::hsubps_Vo_Wo();
default: UD2();
}
default: UD2();
}
0x10: decode OPCODE_OP_BOTTOM3 {
0x0: JO(Jz);
0x1: JNO(Jz);
0x2: JB(Jz);
0x3: JNB(Jz);
0x4: JZ(Jz);
0x5: JNZ(Jz);
0x6: JBE(Jz);
0x7: JNBE(Jz);
}
0x11: decode OPCODE_OP_BOTTOM3 {
0x0: JS(Jz);
0x1: JNS(Jz);
0x2: JP(Jz);
0x3: JNP(Jz);
0x4: JL(Jz);
0x5: JNL(Jz);
0x6: JLE(Jz);
0x7: JNLE(Jz);
}
0x12: decode OPCODE_OP_BOTTOM3 {
0x0: SETO(Eb);
0x1: SETNO(Eb);
0x2: SETB(Eb);
0x3: SETNB(Eb);
0x4: SETZ(Eb);
0x5: SETNZ(Eb);
0x6: SETBE(Eb);
0x7: SETNBE(Eb);
}
0x13: decode OPCODE_OP_BOTTOM3 {
0x0: SETS(Eb);
0x1: SETNS(Eb);
0x2: SETP(Eb);
0x3: SETNP(Eb);
0x4: SETL(Eb);
0x5: SETNL(Eb);
0x6: SETLE(Eb);
0x7: SETNLE(Eb);
}
}
0x14: decode OPCODE_OP_BOTTOM3 {
0x0: push_fs();
0x1: pop_fs();
0x2: CPUIDInst::CPUID({{
CpuidResult result;
bool success = doCpuid(xc->tcBase(), bits(Rax, 31, 0),
bits(Rcx, 31, 0), result);
if (success) {
Rax = result.rax;
Rbx = result.rbx;
Rcx = result.rcx;
Rdx = result.rdx;
} else {
Rax = Rax;
Rbx = Rbx;
Rcx = Rcx;
Rdx = Rdx;
}
}});
0x3: Inst::BT(Ev,Gv);
0x4: Inst::SHLD(Ev,Gv,Ib);
0x5: Inst::SHLD(Ev,Gv);
default: Inst::UD2();
}
0x15: decode OPCODE_OP_BOTTOM3 {
0x0: push_gs();
0x1: pop_gs();
0x2: rsm_smm();
0x3: Inst::BTS(Ev,Gv);
0x4: Inst::SHRD(Ev,Gv,Ib);
0x5: Inst::SHRD(Ev,Gv);
//0x6: group15();
0x6: decode MODRM_MOD {
0x3: decode MODRM_REG {
0x5: BasicOperate::LFENCE(
{{/*Nothing*/}}, IsReadBarrier);
0x6: BasicOperate::MFENCE(
{{/*Nothing*/}}, IsMemBarrier);
0x7: BasicOperate::SFENCE(
{{/*Nothing*/}}, IsWriteBarrier);
default: Inst::UD2();
}
default: decode MODRM_REG {
0x0: decode OPSIZE {
4: Inst::FXSAVE(M);
8: Inst::FXSAVE64(M);
default: fxsave();
}
0x1: decode OPSIZE {
4: Inst::FXRSTOR(M);
8: Inst::FXRSTOR64(M);
default: fxrstor();
}
0x2: Inst::LDMXCSR(Md);
0x3: Inst::STMXCSR(Md);
0x4: xsave();
0x5: xrstor();
0x6: Inst::UD2();
0x7: clflush();
}
}
0x7: Inst::IMUL(Gv,Ev);
}
format Inst {
0x16: decode OPCODE_OP_BOTTOM3 {
0x0: CMPXCHG(Eb,Gb);
0x1: CMPXCHG(Ev,Gv);
0x2: WarnUnimpl::lss_Gz_Mp();
0x3: BTR(Ev,Gv);
0x4: WarnUnimpl::lfs_Gz_Mp();
0x5: WarnUnimpl::lgs_Gz_Mp();
//The size of the second operand in these instructions
//should really be "b" or "w", but it's set to v in order
//to have a consistent register size. This shouldn't
//affect behavior.
0x6: MOVZX_B(Gv,Ev);
0x7: MOVZX_W(Gv,Ev);
}
0x17: decode OPCODE_OP_BOTTOM3 {
0x0: decode LEGACY_REP {
0x0: WarnUnimpl::jmpe_Jz();
0x1: WarnUnimpl::popcnt_Gv_Ev();
}
//0x1: group10_UD2();
0x1: UD2();
//0x2: group8_Ev_Ib();
0x2: decode MODRM_REG {
0x4: BT(Ev,Ib);
0x5: BTS(Ev,Ib);
0x6: BTR(Ev,Ib);
0x7: BTC(Ev,Ib);
default: UD2();
}
0x3: BTC(Ev,Gv);
0x4: BSF(Gv,Ev);
0x5: BSR(Gv,Ev);
//The size of the second operand in these instructions
//should really be "b" or "w", but it's set to v in order
//to have a consistent register size. This shouldn't
//affect behavior.
0x6: MOVSX_B(Gv,Ev);
0x7: MOVSX_W(Gv,Ev);
}
0x18: decode OPCODE_OP_BOTTOM3 {
0x0: XADD(Eb,Gb);
0x1: XADD(Ev,Gv);
//0x7: group9();
0x7: decode MODRM_REG {
//Also CMPXCHG16B
0x1: CMPXCHG8B(Mdp);
0x6: decode LEGACY_OP {
0x1: WarnUnimpl::vmclear_Mq();
default: decode LEGACY_REP {
0x1: WarnUnimpl::vmxon_Mq();
0x0: WarnUnimpl::vmptrld_Mq();
}
}
0x7: WarnUnimpl::vmptrst_Mq();
default: UD2();
}
default: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x2: CMPPS(Vo,Wo,Ib);
0x3: MOVNTI(Mdp,Gdp);
0x4: PINSRW(Pq,Ew,Ib);
0x5: PEXTRW(Gd,PRq,Ib);
0x6: SHUFPS(Vps,Wps,Ib);
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x2: CMPSS(Vd,Wd,Ib);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x2: CMPPD(Vo,Wo,Ib);
0x4: PINSRW(Vdw,Ew,Ib);
0x5: PEXTRW(Gd,VRdq,Ib);
0x6: SHUFPD(Vpd,Wpd,Ib);
default: UD2();
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x2: CMPSD(Vq,Wq,Ib);
default: UD2();
}
default: UD2();
}
}
0x19: decode OPSIZE {
4: BSWAP_D(Bd);
8: BSWAP_Q(Bq);
default: UD2();
}
0x1A: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x1: PSRLW(Pq,Qq);
0x2: PSRLD(Pq,Qq);
0x3: PSRLQ(Pq,Qq);
0x4: PADDQ(Pq,Qq);
0x5: PMULLW(Pq,Qq);
0x7: PMOVMSKB(Gd,PRq);
default: UD2();
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x6: MOVQ2DQ(Vo,PRq);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: ADDSUBPD(Vo,Wo);
0x1: PSRLW(Vo,Wo);
0x2: PSRLD(Vo,Wo);
0x3: PSRLQ(Vo,Wo);
0x4: PADDQ(Vo,Wo);
0x5: PMULLW(Vo,Wo);
0x6: MOVQ(Wq,Vq);
0x7: PMOVMSKB(Gd,VRo);
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x0: WarnUnimpl::addsubps_Vo_Wo();
0x6: MOVDQ2Q(Pq,VRq);
default: UD2();
}
default: UD2();
}
0x1B: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: PSUBUSB(Pq,Qq);
0x1: PSUBUSW(Pq,Qq);
0x2: PMINUB(Pq,Qq);
0x3: PAND(Pq,Qq);
0x4: PADDUSB(Pq,Qq);
0x5: PADDUSW(Pq,Qq);
0x6: PMAXUB(Pq,Qq);
0x7: PANDN(Pq,Qq);
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: PSUBUSB(Vo,Wo);
0x1: PSUBUSW(Vo,Wo);
0x2: PMINUB(Vo,Wo);
0x3: PAND(Vo,Wo);
0x4: PADDUSB(Vo,Wo);
0x5: PADDUSW(Vo,Wo);
0x6: PMAXUB(Vo,Wo);
0x7: PANDN(Vo,Wo);
}
default: UD2();
}
0x1C: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: PAVGB(Pq,Qq);
0x1: PSRAW(Pq,Qq);
0x2: PSRAD(Pq,Qq);
0x3: PAVGW(Pq,Qq);
0x4: PMULHUW(Pq,Qq);
0x5: PMULHW(Pq,Qq);
0x7: WarnUnimpl::movntq_Mq_Pq();
default: UD2();
}
// repe (0xF3)
0x4: decode OPCODE_OP_BOTTOM3 {
0x6: CVTDQ2PD(Vo,Wq);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: PAVGB(Vo,Wo);
0x1: PSRAW(Vo,Wo);
0x2: PSRAD(Vo,Wo);
0x3: PAVGW(Vo,Wo);
0x4: PMULHUW(Vo,Wo);
0x5: PMULHW(Vo,Wo);
0x6: CVTTPD2DQ(Vo,Wo);
0x7: WarnUnimpl::movntdq_Mo_Vo();
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x6: CVTPD2DQ(Vo,Wo);
default: UD2();
}
default: UD2();
}
0x1D: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: PSUBSB(Pq,Qq);
0x1: PSUBSW(Pq,Qq);
0x2: PMINSW(Pq,Qq);
0x3: POR(Pq,Qq);
0x4: PADDSB(Pq,Qq);
0x5: PADDSW(Pq,Qq);
0x6: PMAXSW(Pq,Qq);
0x7: PXOR(Pq,Qq);
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: PSUBSB(Vo,Wo);
0x1: PSUBSW(Vo,Wo);
0x2: PMINSW(Vo,Wo);
0x3: POR(Vo,Wo);
0x4: PADDSB(Vo,Wo);
0x5: PADDSW(Vo,Wo);
0x6: PMAXSW(Vo,Wo);
0x7: PXOR(Vo,Wo);
}
default: UD2();
}
0x1E: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x1: PSLLW(Pq,Qq);
0x2: PSLLD(Pq,Qq);
0x3: PSLLQ(Pq,Qq);
0x4: PMULUDQ(Pq,Qq);
0x5: PMADDWD(Pq,Qq);
0x6: PSADBW(Pq,Qq);
0x7: MASKMOVQ(Pq,PRq);
default: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x1: PSLLW(Vo,Wo);
0x2: PSLLD(Vo,Wo);
0x3: PSLLQ(Vo,Wo);
0x4: PMULUDQ(Vo,Wo);
0x5: PMADDWD(Vo,Wo);
0x6: PSADBW(Vo,Wo);
0x7: MASKMOVDQU(Vo,VRo);
default: UD2();
}
// repne (0xF2)
0x8: decode OPCODE_OP_BOTTOM3 {
0x0: WarnUnimpl::lddqu_Vo_Mo();
default: UD2();
}
default: UD2();
}
0x1F: decode LEGACY_DECODEVAL {
// no prefix
0x0: decode OPCODE_OP_BOTTOM3 {
0x0: PSUBB(Pq,Qq);
0x1: PSUBW(Pq,Qq);
0x2: PSUBD(Pq,Qq);
0x3: PSUBQ(Pq,Qq);
0x4: PADDB(Pq,Qq);
0x5: PADDW(Pq,Qq);
0x6: PADDD(Pq,Qq);
0x7: UD2();
}
// operand size (0x66)
0x1: decode OPCODE_OP_BOTTOM3 {
0x0: PSUBB(Vo,Wo);
0x1: PSUBW(Vo,Wo);
0x2: PSUBD(Vo,Wo);
0x3: PSUBQ(Vo,Wo);
0x4: PADDB(Vo,Wo);
0x5: PADDW(Vo,Wo);
0x6: PADDD(Vo,Wo);
0x7: UD2();
}
default: UD2();
}
}
default: FailUnimpl::twoByteOps();
}
}