gem5/cpu/o3/regfile.hh
Gabe Black c5dcd152f2 Changed targetarch to just arch.
SConscript:
    Changed all of the "targetarch" files to be "arch" files
arch/SConscript:
    Added all of the remaining targetarch files to isa_switch_hdrs

--HG--
extra : convert_revision : a37d18349e27cf92dce12814f21944daa7fe9480
2006-02-27 05:35:43 -05:00

639 lines
18 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_O3_CPU_REGFILE_HH__
#define __CPU_O3_CPU_REGFILE_HH__
// @todo: Destructor
#include "arch/isa_traits.hh"
#include "arch/faults.hh"
#include "base/trace.hh"
#include "config/full_system.hh"
#include "cpu/o3/comm.hh"
#if FULL_SYSTEM
#include "arch/ev5.hh"
#include "kern/kernel_stats.hh"
using namespace EV5;
#endif
// This really only depends on the ISA, and not the Impl. It might be nicer
// to see if I can make it depend on nothing...
// Things that are in the ifdef FULL_SYSTEM are pretty dependent on the ISA,
// and should go in the AlphaFullCPU.
template <class Impl>
class PhysRegFile
{
protected:
typedef TheISA::IntReg IntReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::MiscRegFile MiscRegFile;
//Note that most of the definitions of the IntReg, FloatReg, etc. exist
//within the Impl/ISA class and not within this PhysRegFile class.
//Will need some way to allow stuff like swap_palshadow to access the
//correct registers. Might require code changes to swap_palshadow and
//other execution contexts.
//Will make these registers public for now, but they probably should
//be private eventually with some accessor functions.
public:
typedef typename Impl::FullCPU FullCPU;
PhysRegFile(unsigned _numPhysicalIntRegs,
unsigned _numPhysicalFloatRegs);
//Everything below should be pretty well identical to the normal
//register file that exists within AlphaISA class.
//The duplication is unfortunate but it's better than having
//different ways to access certain registers.
//Add these in later when everything else is in place
// void serialize(std::ostream &os);
// void unserialize(Checkpoint *cp, const std::string &section);
uint64_t readIntReg(PhysRegIndex reg_idx)
{
assert(reg_idx < numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Access to int register %i, has data "
"%i\n", int(reg_idx), intRegFile[reg_idx]);
return intRegFile[reg_idx];
}
float readFloatRegSingle(PhysRegIndex reg_idx)
{
// Remove the base Float reg dependency.
reg_idx = reg_idx - numPhysicalIntRegs;
assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Access to float register %i as single, has "
"data %8.8f\n", int(reg_idx), (float)floatRegFile[reg_idx].d);
return (float)floatRegFile[reg_idx].d;
}
double readFloatRegDouble(PhysRegIndex reg_idx)
{
// Remove the base Float reg dependency.
reg_idx = reg_idx - numPhysicalIntRegs;
assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Access to float register %i as double, has "
" data %8.8f\n", int(reg_idx), floatRegFile[reg_idx].d);
return floatRegFile[reg_idx].d;
}
uint64_t readFloatRegInt(PhysRegIndex reg_idx)
{
// Remove the base Float reg dependency.
reg_idx = reg_idx - numPhysicalIntRegs;
assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Access to float register %i as int, has data "
"%lli\n", int(reg_idx), floatRegFile[reg_idx].q);
return floatRegFile[reg_idx].q;
}
void setIntReg(PhysRegIndex reg_idx, uint64_t val)
{
assert(reg_idx < numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Setting int register %i to %lli\n",
int(reg_idx), val);
intRegFile[reg_idx] = val;
}
void setFloatRegSingle(PhysRegIndex reg_idx, float val)
{
// Remove the base Float reg dependency.
reg_idx = reg_idx - numPhysicalIntRegs;
assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Setting float register %i to %8.8f\n",
int(reg_idx), val);
floatRegFile[reg_idx].d = (double)val;
}
void setFloatRegDouble(PhysRegIndex reg_idx, double val)
{
// Remove the base Float reg dependency.
reg_idx = reg_idx - numPhysicalIntRegs;
assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Setting float register %i to %8.8f\n",
int(reg_idx), val);
floatRegFile[reg_idx].d = val;
}
void setFloatRegInt(PhysRegIndex reg_idx, uint64_t val)
{
// Remove the base Float reg dependency.
reg_idx = reg_idx - numPhysicalIntRegs;
assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs);
DPRINTF(IEW, "RegFile: Setting float register %i to %lli\n",
int(reg_idx), val);
floatRegFile[reg_idx].q = val;
}
uint64_t readPC()
{
return pc;
}
void setPC(uint64_t val)
{
pc = val;
}
void setNextPC(uint64_t val)
{
npc = val;
}
//Consider leaving this stuff and below in some implementation specific
//file as opposed to the general register file. Or have a derived class.
uint64_t readUniq()
{
return miscRegs.uniq;
}
void setUniq(uint64_t val)
{
miscRegs.uniq = val;
}
uint64_t readFpcr()
{
return miscRegs.fpcr;
}
void setFpcr(uint64_t val)
{
miscRegs.fpcr = val;
}
#if FULL_SYSTEM
uint64_t readIpr(int idx, Fault &fault);
Fault setIpr(int idx, uint64_t val);
InternalProcReg *getIpr() { return ipr; }
int readIntrFlag() { return intrflag; }
void setIntrFlag(int val) { intrflag = val; }
#endif
// These should be private eventually, but will be public for now
// so that I can hack around the initregs issue.
public:
/** (signed) integer register file. */
IntReg *intRegFile;
/** Floating point register file. */
FloatReg *floatRegFile;
/** Miscellaneous register file. */
MiscRegFile miscRegs;
/** Program counter. */
Addr pc;
/** Next-cycle program counter. */
Addr npc;
#if FULL_SYSTEM
private:
// This is ISA specifc stuff; remove it eventually once ISAImpl is used
IntReg palregs[NumIntRegs]; // PAL shadow registers
InternalProcReg ipr[NumInternalProcRegs]; // internal processor regs
int intrflag; // interrupt flag
bool pal_shadow; // using pal_shadow registers
#endif
private:
FullCPU *cpu;
public:
void setCPU(FullCPU *cpu_ptr) { cpu = cpu_ptr; }
unsigned numPhysicalIntRegs;
unsigned numPhysicalFloatRegs;
};
template <class Impl>
PhysRegFile<Impl>::PhysRegFile(unsigned _numPhysicalIntRegs,
unsigned _numPhysicalFloatRegs)
: numPhysicalIntRegs(_numPhysicalIntRegs),
numPhysicalFloatRegs(_numPhysicalFloatRegs)
{
intRegFile = new IntReg[numPhysicalIntRegs];
floatRegFile = new FloatReg[numPhysicalFloatRegs];
memset(intRegFile, 0, sizeof(*intRegFile));
memset(floatRegFile, 0, sizeof(*floatRegFile));
}
#if FULL_SYSTEM
//Problem: This code doesn't make sense at the RegFile level because it
//needs things such as the itb and dtb. Either put it at the CPU level or
//the DynInst level.
template <class Impl>
uint64_t
PhysRegFile<Impl>::readIpr(int idx, Fault &fault)
{
uint64_t retval = 0; // return value, default 0
switch (idx) {
case TheISA::IPR_PALtemp0:
case TheISA::IPR_PALtemp1:
case TheISA::IPR_PALtemp2:
case TheISA::IPR_PALtemp3:
case TheISA::IPR_PALtemp4:
case TheISA::IPR_PALtemp5:
case TheISA::IPR_PALtemp6:
case TheISA::IPR_PALtemp7:
case TheISA::IPR_PALtemp8:
case TheISA::IPR_PALtemp9:
case TheISA::IPR_PALtemp10:
case TheISA::IPR_PALtemp11:
case TheISA::IPR_PALtemp12:
case TheISA::IPR_PALtemp13:
case TheISA::IPR_PALtemp14:
case TheISA::IPR_PALtemp15:
case TheISA::IPR_PALtemp16:
case TheISA::IPR_PALtemp17:
case TheISA::IPR_PALtemp18:
case TheISA::IPR_PALtemp19:
case TheISA::IPR_PALtemp20:
case TheISA::IPR_PALtemp21:
case TheISA::IPR_PALtemp22:
case TheISA::IPR_PALtemp23:
case TheISA::IPR_PAL_BASE:
case TheISA::IPR_IVPTBR:
case TheISA::IPR_DC_MODE:
case TheISA::IPR_MAF_MODE:
case TheISA::IPR_ISR:
case TheISA::IPR_EXC_ADDR:
case TheISA::IPR_IC_PERR_STAT:
case TheISA::IPR_DC_PERR_STAT:
case TheISA::IPR_MCSR:
case TheISA::IPR_ASTRR:
case TheISA::IPR_ASTER:
case TheISA::IPR_SIRR:
case TheISA::IPR_ICSR:
case TheISA::IPR_ICM:
case TheISA::IPR_DTB_CM:
case TheISA::IPR_IPLR:
case TheISA::IPR_INTID:
case TheISA::IPR_PMCTR:
// no side-effect
retval = ipr[idx];
break;
case TheISA::IPR_CC:
retval |= ipr[idx] & ULL(0xffffffff00000000);
retval |= curTick & ULL(0x00000000ffffffff);
break;
case TheISA::IPR_VA:
retval = ipr[idx];
break;
case TheISA::IPR_VA_FORM:
case TheISA::IPR_MM_STAT:
case TheISA::IPR_IFAULT_VA_FORM:
case TheISA::IPR_EXC_MASK:
case TheISA::IPR_EXC_SUM:
retval = ipr[idx];
break;
case TheISA::IPR_DTB_PTE:
{
TheISA::PTE &pte = cpu->dtb->index(1);
retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32;
retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8;
retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12;
retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1;
retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2;
retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4;
retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57;
}
break;
// write only registers
case TheISA::IPR_HWINT_CLR:
case TheISA::IPR_SL_XMIT:
case TheISA::IPR_DC_FLUSH:
case TheISA::IPR_IC_FLUSH:
case TheISA::IPR_ALT_MODE:
case TheISA::IPR_DTB_IA:
case TheISA::IPR_DTB_IAP:
case TheISA::IPR_ITB_IA:
case TheISA::IPR_ITB_IAP:
fault = new UnimplementedOpcodeFault;
break;
default:
// invalid IPR
fault = new UnimplementedOpcodeFault;
break;
}
return retval;
}
extern int break_ipl;
template <class Impl>
Fault
PhysRegFile<Impl>::setIpr(int idx, uint64_t val)
{
uint64_t old;
switch (idx) {
case TheISA::IPR_PALtemp0:
case TheISA::IPR_PALtemp1:
case TheISA::IPR_PALtemp2:
case TheISA::IPR_PALtemp3:
case TheISA::IPR_PALtemp4:
case TheISA::IPR_PALtemp5:
case TheISA::IPR_PALtemp6:
case TheISA::IPR_PALtemp7:
case TheISA::IPR_PALtemp8:
case TheISA::IPR_PALtemp9:
case TheISA::IPR_PALtemp10:
case TheISA::IPR_PALtemp11:
case TheISA::IPR_PALtemp12:
case TheISA::IPR_PALtemp13:
case TheISA::IPR_PALtemp14:
case TheISA::IPR_PALtemp15:
case TheISA::IPR_PALtemp16:
case TheISA::IPR_PALtemp17:
case TheISA::IPR_PALtemp18:
case TheISA::IPR_PALtemp19:
case TheISA::IPR_PALtemp20:
case TheISA::IPR_PALtemp21:
case TheISA::IPR_PALtemp22:
case TheISA::IPR_PAL_BASE:
case TheISA::IPR_IC_PERR_STAT:
case TheISA::IPR_DC_PERR_STAT:
case TheISA::IPR_PMCTR:
// write entire quad w/ no side-effect
ipr[idx] = val;
break;
case TheISA::IPR_CC_CTL:
// This IPR resets the cycle counter. We assume this only
// happens once... let's verify that.
assert(ipr[idx] == 0);
ipr[idx] = 1;
break;
case TheISA::IPR_CC:
// This IPR only writes the upper 64 bits. It's ok to write
// all 64 here since we mask out the lower 32 in rpcc (see
// isa_desc).
ipr[idx] = val;
break;
case TheISA::IPR_PALtemp23:
// write entire quad w/ no side-effect
old = ipr[idx];
ipr[idx] = val;
break;
case TheISA::IPR_DTB_PTE:
// write entire quad w/ no side-effect, tag is forthcoming
ipr[idx] = val;
break;
case TheISA::IPR_EXC_ADDR:
// second least significant bit in PC is always zero
ipr[idx] = val & ~2;
break;
case TheISA::IPR_ASTRR:
case TheISA::IPR_ASTER:
// only write least significant four bits - privilege mask
ipr[idx] = val & 0xf;
break;
case TheISA::IPR_IPLR:
// only write least significant five bits - interrupt level
ipr[idx] = val & 0x1f;
break;
case TheISA::IPR_DTB_CM:
case TheISA::IPR_ICM:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case TheISA::IPR_ALT_MODE:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case TheISA::IPR_MCSR:
// more here after optimization...
ipr[idx] = val;
break;
case TheISA::IPR_SIRR:
// only write software interrupt mask
ipr[idx] = val & 0x7fff0;
break;
case TheISA::IPR_ICSR:
ipr[idx] = val & ULL(0xffffff0300);
break;
case TheISA::IPR_IVPTBR:
case TheISA::IPR_MVPTBR:
ipr[idx] = val & ULL(0xffffffffc0000000);
break;
case TheISA::IPR_DC_TEST_CTL:
ipr[idx] = val & 0x1ffb;
break;
case TheISA::IPR_DC_MODE:
case TheISA::IPR_MAF_MODE:
ipr[idx] = val & 0x3f;
break;
case TheISA::IPR_ITB_ASN:
ipr[idx] = val & 0x7f0;
break;
case TheISA::IPR_DTB_ASN:
ipr[idx] = val & ULL(0xfe00000000000000);
break;
case TheISA::IPR_EXC_SUM:
case TheISA::IPR_EXC_MASK:
// any write to this register clears it
ipr[idx] = 0;
break;
case TheISA::IPR_INTID:
case TheISA::IPR_SL_RCV:
case TheISA::IPR_MM_STAT:
case TheISA::IPR_ITB_PTE_TEMP:
case TheISA::IPR_DTB_PTE_TEMP:
// read-only registers
return new UnimplementedOpcodeFault;
case TheISA::IPR_HWINT_CLR:
case TheISA::IPR_SL_XMIT:
case TheISA::IPR_DC_FLUSH:
case TheISA::IPR_IC_FLUSH:
// the following are write only
ipr[idx] = val;
break;
case TheISA::IPR_DTB_IA:
// really a control write
ipr[idx] = 0;
cpu->dtb->flushAll();
break;
case TheISA::IPR_DTB_IAP:
// really a control write
ipr[idx] = 0;
cpu->dtb->flushProcesses();
break;
case TheISA::IPR_DTB_IS:
// really a control write
ipr[idx] = val;
cpu->dtb->flushAddr(val, DTB_ASN_ASN(ipr[TheISA::IPR_DTB_ASN]));
break;
case TheISA::IPR_DTB_TAG: {
struct TheISA::PTE pte;
// FIXME: granularity hints NYI...
if (DTB_PTE_GH(ipr[TheISA::IPR_DTB_PTE]) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = DTB_PTE_PPN(ipr[TheISA::IPR_DTB_PTE]);
pte.xre = DTB_PTE_XRE(ipr[TheISA::IPR_DTB_PTE]);
pte.xwe = DTB_PTE_XWE(ipr[TheISA::IPR_DTB_PTE]);
pte.fonr = DTB_PTE_FONR(ipr[TheISA::IPR_DTB_PTE]);
pte.fonw = DTB_PTE_FONW(ipr[TheISA::IPR_DTB_PTE]);
pte.asma = DTB_PTE_ASMA(ipr[TheISA::IPR_DTB_PTE]);
pte.asn = DTB_ASN_ASN(ipr[TheISA::IPR_DTB_ASN]);
// insert new TAG/PTE value into data TLB
cpu->dtb->insert(val, pte);
}
break;
case TheISA::IPR_ITB_PTE: {
struct TheISA::PTE pte;
// FIXME: granularity hints NYI...
if (ITB_PTE_GH(val) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = ITB_PTE_PPN(val);
pte.xre = ITB_PTE_XRE(val);
pte.xwe = 0;
pte.fonr = ITB_PTE_FONR(val);
pte.fonw = ITB_PTE_FONW(val);
pte.asma = ITB_PTE_ASMA(val);
pte.asn = ITB_ASN_ASN(ipr[TheISA::IPR_ITB_ASN]);
// insert new TAG/PTE value into data TLB
cpu->itb->insert(ipr[TheISA::IPR_ITB_TAG], pte);
}
break;
case TheISA::IPR_ITB_IA:
// really a control write
ipr[idx] = 0;
cpu->itb->flushAll();
break;
case TheISA::IPR_ITB_IAP:
// really a control write
ipr[idx] = 0;
cpu->itb->flushProcesses();
break;
case TheISA::IPR_ITB_IS:
// really a control write
ipr[idx] = val;
cpu->itb->flushAddr(val, ITB_ASN_ASN(ipr[TheISA::IPR_ITB_ASN]));
break;
default:
// invalid IPR
return new UnimplementedOpcodeFault;
}
// no error...
return NoFault;
}
#endif // #if FULL_SYSTEM
#endif // __CPU_O3_CPU_REGFILE_HH__