c5bf1390aa
This patch moves Ruby System from being a SimObject to recently introduced ClockedObject.
731 lines
25 KiB
C++
731 lines
25 KiB
C++
/*
|
|
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "base/misc.hh"
|
|
#include "base/str.hh"
|
|
#include "config/the_isa.hh"
|
|
#if THE_ISA == X86_ISA
|
|
#include "arch/x86/insts/microldstop.hh"
|
|
#endif // X86_ISA
|
|
#include "cpu/testers/rubytest/RubyTester.hh"
|
|
#include "debug/MemoryAccess.hh"
|
|
#include "debug/ProtocolTrace.hh"
|
|
#include "debug/RubySequencer.hh"
|
|
#include "debug/RubyStats.hh"
|
|
#include "mem/protocol/PrefetchBit.hh"
|
|
#include "mem/protocol/RubyAccessMode.hh"
|
|
#include "mem/ruby/buffers/MessageBuffer.hh"
|
|
#include "mem/ruby/common/Global.hh"
|
|
#include "mem/ruby/profiler/Profiler.hh"
|
|
#include "mem/ruby/slicc_interface/RubyRequest.hh"
|
|
#include "mem/ruby/system/Sequencer.hh"
|
|
#include "mem/ruby/system/System.hh"
|
|
#include "mem/packet.hh"
|
|
|
|
using namespace std;
|
|
|
|
Sequencer *
|
|
RubySequencerParams::create()
|
|
{
|
|
return new Sequencer(this);
|
|
}
|
|
|
|
Sequencer::Sequencer(const Params *p)
|
|
: RubyPort(p), deadlockCheckEvent(this)
|
|
{
|
|
m_store_waiting_on_load_cycles = 0;
|
|
m_store_waiting_on_store_cycles = 0;
|
|
m_load_waiting_on_store_cycles = 0;
|
|
m_load_waiting_on_load_cycles = 0;
|
|
|
|
m_outstanding_count = 0;
|
|
|
|
m_instCache_ptr = p->icache;
|
|
m_dataCache_ptr = p->dcache;
|
|
m_max_outstanding_requests = p->max_outstanding_requests;
|
|
m_deadlock_threshold = p->deadlock_threshold;
|
|
|
|
assert(m_max_outstanding_requests > 0);
|
|
assert(m_deadlock_threshold > 0);
|
|
assert(m_instCache_ptr != NULL);
|
|
assert(m_dataCache_ptr != NULL);
|
|
|
|
m_usingNetworkTester = p->using_network_tester;
|
|
}
|
|
|
|
Sequencer::~Sequencer()
|
|
{
|
|
}
|
|
|
|
void
|
|
Sequencer::wakeup()
|
|
{
|
|
// Check for deadlock of any of the requests
|
|
Time current_time = g_system_ptr->getTime();
|
|
|
|
// Check across all outstanding requests
|
|
int total_outstanding = 0;
|
|
|
|
RequestTable::iterator read = m_readRequestTable.begin();
|
|
RequestTable::iterator read_end = m_readRequestTable.end();
|
|
for (; read != read_end; ++read) {
|
|
SequencerRequest* request = read->second;
|
|
if (current_time - request->issue_time < m_deadlock_threshold)
|
|
continue;
|
|
|
|
panic("Possible Deadlock detected. Aborting!\n"
|
|
"version: %d request.paddr: 0x%x m_readRequestTable: %d "
|
|
"current time: %u issue_time: %d difference: %d\n", m_version,
|
|
Address(request->pkt->getAddr()), m_readRequestTable.size(),
|
|
current_time, request->issue_time,
|
|
current_time - request->issue_time);
|
|
}
|
|
|
|
RequestTable::iterator write = m_writeRequestTable.begin();
|
|
RequestTable::iterator write_end = m_writeRequestTable.end();
|
|
for (; write != write_end; ++write) {
|
|
SequencerRequest* request = write->second;
|
|
if (current_time - request->issue_time < m_deadlock_threshold)
|
|
continue;
|
|
|
|
panic("Possible Deadlock detected. Aborting!\n"
|
|
"version: %d request.paddr: 0x%x m_writeRequestTable: %d "
|
|
"current time: %u issue_time: %d difference: %d\n", m_version,
|
|
Address(request->pkt->getAddr()), m_writeRequestTable.size(),
|
|
current_time, request->issue_time,
|
|
current_time - request->issue_time);
|
|
}
|
|
|
|
total_outstanding += m_writeRequestTable.size();
|
|
total_outstanding += m_readRequestTable.size();
|
|
|
|
assert(m_outstanding_count == total_outstanding);
|
|
|
|
if (m_outstanding_count > 0) {
|
|
// If there are still outstanding requests, keep checking
|
|
schedule(deadlockCheckEvent,
|
|
g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
|
|
}
|
|
}
|
|
|
|
void
|
|
Sequencer::printStats(ostream & out) const
|
|
{
|
|
out << "Sequencer: " << m_name << endl
|
|
<< " store_waiting_on_load_cycles: "
|
|
<< m_store_waiting_on_load_cycles << endl
|
|
<< " store_waiting_on_store_cycles: "
|
|
<< m_store_waiting_on_store_cycles << endl
|
|
<< " load_waiting_on_load_cycles: "
|
|
<< m_load_waiting_on_load_cycles << endl
|
|
<< " load_waiting_on_store_cycles: "
|
|
<< m_load_waiting_on_store_cycles << endl;
|
|
}
|
|
|
|
void
|
|
Sequencer::printProgress(ostream& out) const
|
|
{
|
|
#if 0
|
|
int total_demand = 0;
|
|
out << "Sequencer Stats Version " << m_version << endl;
|
|
out << "Current time = " << g_system_ptr->getTime() << endl;
|
|
out << "---------------" << endl;
|
|
out << "outstanding requests" << endl;
|
|
|
|
out << "proc " << m_Read
|
|
<< " version Requests = " << m_readRequestTable.size() << endl;
|
|
|
|
// print the request table
|
|
RequestTable::iterator read = m_readRequestTable.begin();
|
|
RequestTable::iterator read_end = m_readRequestTable.end();
|
|
for (; read != read_end; ++read) {
|
|
SequencerRequest* request = read->second;
|
|
out << "\tRequest[ " << i << " ] = " << request->type
|
|
<< " Address " << rkeys[i]
|
|
<< " Posted " << request->issue_time
|
|
<< " PF " << PrefetchBit_No << endl;
|
|
total_demand++;
|
|
}
|
|
|
|
out << "proc " << m_version
|
|
<< " Write Requests = " << m_writeRequestTable.size << endl;
|
|
|
|
// print the request table
|
|
RequestTable::iterator write = m_writeRequestTable.begin();
|
|
RequestTable::iterator write_end = m_writeRequestTable.end();
|
|
for (; write != write_end; ++write) {
|
|
SequencerRequest* request = write->second;
|
|
out << "\tRequest[ " << i << " ] = " << request.getType()
|
|
<< " Address " << wkeys[i]
|
|
<< " Posted " << request.getTime()
|
|
<< " PF " << request.getPrefetch() << endl;
|
|
if (request.getPrefetch() == PrefetchBit_No) {
|
|
total_demand++;
|
|
}
|
|
}
|
|
|
|
out << endl;
|
|
|
|
out << "Total Number Outstanding: " << m_outstanding_count << endl
|
|
<< "Total Number Demand : " << total_demand << endl
|
|
<< "Total Number Prefetches : " << m_outstanding_count - total_demand
|
|
<< endl << endl << endl;
|
|
#endif
|
|
}
|
|
|
|
// Insert the request on the correct request table. Return true if
|
|
// the entry was already present.
|
|
RequestStatus
|
|
Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
|
|
{
|
|
assert(m_outstanding_count ==
|
|
(m_writeRequestTable.size() + m_readRequestTable.size()));
|
|
|
|
// See if we should schedule a deadlock check
|
|
if (deadlockCheckEvent.scheduled() == false) {
|
|
schedule(deadlockCheckEvent,
|
|
g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
|
|
}
|
|
|
|
Address line_addr(pkt->getAddr());
|
|
line_addr.makeLineAddress();
|
|
if ((request_type == RubyRequestType_ST) ||
|
|
(request_type == RubyRequestType_RMW_Read) ||
|
|
(request_type == RubyRequestType_RMW_Write) ||
|
|
(request_type == RubyRequestType_Load_Linked) ||
|
|
(request_type == RubyRequestType_Store_Conditional) ||
|
|
(request_type == RubyRequestType_Locked_RMW_Read) ||
|
|
(request_type == RubyRequestType_Locked_RMW_Write) ||
|
|
(request_type == RubyRequestType_FLUSH)) {
|
|
|
|
// Check if there is any outstanding read request for the same
|
|
// cache line.
|
|
if (m_readRequestTable.count(line_addr) > 0) {
|
|
m_store_waiting_on_load_cycles++;
|
|
return RequestStatus_Aliased;
|
|
}
|
|
|
|
pair<RequestTable::iterator, bool> r =
|
|
m_writeRequestTable.insert(RequestTable::value_type(line_addr, 0));
|
|
if (r.second) {
|
|
RequestTable::iterator i = r.first;
|
|
i->second = new SequencerRequest(pkt, request_type,
|
|
g_system_ptr->getTime());
|
|
m_outstanding_count++;
|
|
} else {
|
|
// There is an outstanding write request for the cache line
|
|
m_store_waiting_on_store_cycles++;
|
|
return RequestStatus_Aliased;
|
|
}
|
|
} else {
|
|
// Check if there is any outstanding write request for the same
|
|
// cache line.
|
|
if (m_writeRequestTable.count(line_addr) > 0) {
|
|
m_load_waiting_on_store_cycles++;
|
|
return RequestStatus_Aliased;
|
|
}
|
|
|
|
pair<RequestTable::iterator, bool> r =
|
|
m_readRequestTable.insert(RequestTable::value_type(line_addr, 0));
|
|
|
|
if (r.second) {
|
|
RequestTable::iterator i = r.first;
|
|
i->second = new SequencerRequest(pkt, request_type,
|
|
g_system_ptr->getTime());
|
|
m_outstanding_count++;
|
|
} else {
|
|
// There is an outstanding read request for the cache line
|
|
m_load_waiting_on_load_cycles++;
|
|
return RequestStatus_Aliased;
|
|
}
|
|
}
|
|
|
|
g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
|
|
assert(m_outstanding_count ==
|
|
(m_writeRequestTable.size() + m_readRequestTable.size()));
|
|
|
|
return RequestStatus_Ready;
|
|
}
|
|
|
|
void
|
|
Sequencer::markRemoved()
|
|
{
|
|
m_outstanding_count--;
|
|
assert(m_outstanding_count ==
|
|
m_writeRequestTable.size() + m_readRequestTable.size());
|
|
}
|
|
|
|
void
|
|
Sequencer::removeRequest(SequencerRequest* srequest)
|
|
{
|
|
assert(m_outstanding_count ==
|
|
m_writeRequestTable.size() + m_readRequestTable.size());
|
|
|
|
Address line_addr(srequest->pkt->getAddr());
|
|
line_addr.makeLineAddress();
|
|
if ((srequest->m_type == RubyRequestType_ST) ||
|
|
(srequest->m_type == RubyRequestType_RMW_Read) ||
|
|
(srequest->m_type == RubyRequestType_RMW_Write) ||
|
|
(srequest->m_type == RubyRequestType_Load_Linked) ||
|
|
(srequest->m_type == RubyRequestType_Store_Conditional) ||
|
|
(srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
|
|
(srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
|
|
m_writeRequestTable.erase(line_addr);
|
|
} else {
|
|
m_readRequestTable.erase(line_addr);
|
|
}
|
|
|
|
markRemoved();
|
|
}
|
|
|
|
bool
|
|
Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
|
|
{
|
|
//
|
|
// The success flag indicates whether the LLSC operation was successful.
|
|
// LL ops will always succeed, but SC may fail if the cache line is no
|
|
// longer locked.
|
|
//
|
|
bool success = true;
|
|
if (request->m_type == RubyRequestType_Store_Conditional) {
|
|
if (!m_dataCache_ptr->isLocked(address, m_version)) {
|
|
//
|
|
// For failed SC requests, indicate the failure to the cpu by
|
|
// setting the extra data to zero.
|
|
//
|
|
request->pkt->req->setExtraData(0);
|
|
success = false;
|
|
} else {
|
|
//
|
|
// For successful SC requests, indicate the success to the cpu by
|
|
// setting the extra data to one.
|
|
//
|
|
request->pkt->req->setExtraData(1);
|
|
}
|
|
//
|
|
// Independent of success, all SC operations must clear the lock
|
|
//
|
|
m_dataCache_ptr->clearLocked(address);
|
|
} else if (request->m_type == RubyRequestType_Load_Linked) {
|
|
//
|
|
// Note: To fully follow Alpha LLSC semantics, should the LL clear any
|
|
// previously locked cache lines?
|
|
//
|
|
m_dataCache_ptr->setLocked(address, m_version);
|
|
} else if ((m_dataCache_ptr->isTagPresent(address)) &&
|
|
(m_dataCache_ptr->isLocked(address, m_version))) {
|
|
//
|
|
// Normal writes should clear the locked address
|
|
//
|
|
m_dataCache_ptr->clearLocked(address);
|
|
}
|
|
return success;
|
|
}
|
|
|
|
void
|
|
Sequencer::writeCallback(const Address& address, DataBlock& data)
|
|
{
|
|
writeCallback(address, GenericMachineType_NULL, data);
|
|
}
|
|
|
|
void
|
|
Sequencer::writeCallback(const Address& address,
|
|
GenericMachineType mach,
|
|
DataBlock& data)
|
|
{
|
|
writeCallback(address, mach, data, 0, 0, 0);
|
|
}
|
|
|
|
void
|
|
Sequencer::writeCallback(const Address& address,
|
|
GenericMachineType mach,
|
|
DataBlock& data,
|
|
Time initialRequestTime,
|
|
Time forwardRequestTime,
|
|
Time firstResponseTime)
|
|
{
|
|
assert(address == line_address(address));
|
|
assert(m_writeRequestTable.count(line_address(address)));
|
|
|
|
RequestTable::iterator i = m_writeRequestTable.find(address);
|
|
assert(i != m_writeRequestTable.end());
|
|
SequencerRequest* request = i->second;
|
|
|
|
m_writeRequestTable.erase(i);
|
|
markRemoved();
|
|
|
|
assert((request->m_type == RubyRequestType_ST) ||
|
|
(request->m_type == RubyRequestType_ATOMIC) ||
|
|
(request->m_type == RubyRequestType_RMW_Read) ||
|
|
(request->m_type == RubyRequestType_RMW_Write) ||
|
|
(request->m_type == RubyRequestType_Load_Linked) ||
|
|
(request->m_type == RubyRequestType_Store_Conditional) ||
|
|
(request->m_type == RubyRequestType_Locked_RMW_Read) ||
|
|
(request->m_type == RubyRequestType_Locked_RMW_Write) ||
|
|
(request->m_type == RubyRequestType_FLUSH));
|
|
|
|
|
|
//
|
|
// For Alpha, properly handle LL, SC, and write requests with respect to
|
|
// locked cache blocks.
|
|
//
|
|
// Not valid for Network_test protocl
|
|
//
|
|
bool success = true;
|
|
if(!m_usingNetworkTester)
|
|
success = handleLlsc(address, request);
|
|
|
|
if (request->m_type == RubyRequestType_Locked_RMW_Read) {
|
|
m_controller->blockOnQueue(address, m_mandatory_q_ptr);
|
|
} else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
|
|
m_controller->unblock(address);
|
|
}
|
|
|
|
hitCallback(request, mach, data, success,
|
|
initialRequestTime, forwardRequestTime, firstResponseTime);
|
|
}
|
|
|
|
void
|
|
Sequencer::readCallback(const Address& address, DataBlock& data)
|
|
{
|
|
readCallback(address, GenericMachineType_NULL, data);
|
|
}
|
|
|
|
void
|
|
Sequencer::readCallback(const Address& address,
|
|
GenericMachineType mach,
|
|
DataBlock& data)
|
|
{
|
|
readCallback(address, mach, data, 0, 0, 0);
|
|
}
|
|
|
|
void
|
|
Sequencer::readCallback(const Address& address,
|
|
GenericMachineType mach,
|
|
DataBlock& data,
|
|
Time initialRequestTime,
|
|
Time forwardRequestTime,
|
|
Time firstResponseTime)
|
|
{
|
|
assert(address == line_address(address));
|
|
assert(m_readRequestTable.count(line_address(address)));
|
|
|
|
RequestTable::iterator i = m_readRequestTable.find(address);
|
|
assert(i != m_readRequestTable.end());
|
|
SequencerRequest* request = i->second;
|
|
|
|
m_readRequestTable.erase(i);
|
|
markRemoved();
|
|
|
|
assert((request->m_type == RubyRequestType_LD) ||
|
|
(request->m_type == RubyRequestType_IFETCH));
|
|
|
|
hitCallback(request, mach, data, true,
|
|
initialRequestTime, forwardRequestTime, firstResponseTime);
|
|
}
|
|
|
|
void
|
|
Sequencer::hitCallback(SequencerRequest* srequest,
|
|
GenericMachineType mach,
|
|
DataBlock& data,
|
|
bool success,
|
|
Time initialRequestTime,
|
|
Time forwardRequestTime,
|
|
Time firstResponseTime)
|
|
{
|
|
PacketPtr pkt = srequest->pkt;
|
|
Address request_address(pkt->getAddr());
|
|
Address request_line_address(pkt->getAddr());
|
|
request_line_address.makeLineAddress();
|
|
RubyRequestType type = srequest->m_type;
|
|
Time issued_time = srequest->issue_time;
|
|
|
|
// Set this cache entry to the most recently used
|
|
if (type == RubyRequestType_IFETCH) {
|
|
m_instCache_ptr->setMRU(request_line_address);
|
|
} else {
|
|
m_dataCache_ptr->setMRU(request_line_address);
|
|
}
|
|
|
|
assert(g_system_ptr->getTime() >= issued_time);
|
|
Time miss_latency = g_system_ptr->getTime() - issued_time;
|
|
|
|
// Profile the miss latency for all non-zero demand misses
|
|
if (miss_latency != 0) {
|
|
g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
|
|
|
|
if (mach == GenericMachineType_L1Cache_wCC) {
|
|
g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
|
|
initialRequestTime,
|
|
forwardRequestTime,
|
|
firstResponseTime,
|
|
g_system_ptr->getTime());
|
|
}
|
|
|
|
if (mach == GenericMachineType_Directory) {
|
|
g_system_ptr->getProfiler()->missLatencyDir(issued_time,
|
|
initialRequestTime,
|
|
forwardRequestTime,
|
|
firstResponseTime,
|
|
g_system_ptr->getTime());
|
|
}
|
|
|
|
DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
|
|
curTick(), m_version, "Seq",
|
|
success ? "Done" : "SC_Failed", "", "",
|
|
request_address, miss_latency);
|
|
}
|
|
|
|
// update the data
|
|
if (g_system_ptr->m_warmup_enabled) {
|
|
assert(pkt->getPtr<uint8_t>(false) != NULL);
|
|
data.setData(pkt->getPtr<uint8_t>(false),
|
|
request_address.getOffset(), pkt->getSize());
|
|
} else if (pkt->getPtr<uint8_t>(true) != NULL) {
|
|
if ((type == RubyRequestType_LD) ||
|
|
(type == RubyRequestType_IFETCH) ||
|
|
(type == RubyRequestType_RMW_Read) ||
|
|
(type == RubyRequestType_Locked_RMW_Read) ||
|
|
(type == RubyRequestType_Load_Linked)) {
|
|
memcpy(pkt->getPtr<uint8_t>(true),
|
|
data.getData(request_address.getOffset(), pkt->getSize()),
|
|
pkt->getSize());
|
|
} else {
|
|
data.setData(pkt->getPtr<uint8_t>(true),
|
|
request_address.getOffset(), pkt->getSize());
|
|
}
|
|
} else {
|
|
DPRINTF(MemoryAccess,
|
|
"WARNING. Data not transfered from Ruby to M5 for type %s\n",
|
|
RubyRequestType_to_string(type));
|
|
}
|
|
|
|
// If using the RubyTester, update the RubyTester sender state's
|
|
// subBlock with the recieved data. The tester will later access
|
|
// this state.
|
|
// Note: RubyPort will access it's sender state before the
|
|
// RubyTester.
|
|
if (m_usingRubyTester) {
|
|
RubyPort::SenderState *requestSenderState =
|
|
safe_cast<RubyPort::SenderState*>(pkt->senderState);
|
|
RubyTester::SenderState* testerSenderState =
|
|
safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
|
|
testerSenderState->subBlock->mergeFrom(data);
|
|
}
|
|
|
|
delete srequest;
|
|
|
|
if (g_system_ptr->m_warmup_enabled) {
|
|
delete pkt;
|
|
g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
|
|
} else if (g_system_ptr->m_cooldown_enabled) {
|
|
delete pkt;
|
|
g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
|
|
} else {
|
|
ruby_hit_callback(pkt);
|
|
}
|
|
}
|
|
|
|
bool
|
|
Sequencer::empty() const
|
|
{
|
|
return m_writeRequestTable.empty() && m_readRequestTable.empty();
|
|
}
|
|
|
|
RequestStatus
|
|
Sequencer::makeRequest(PacketPtr pkt)
|
|
{
|
|
if (m_outstanding_count >= m_max_outstanding_requests) {
|
|
return RequestStatus_BufferFull;
|
|
}
|
|
|
|
RubyRequestType primary_type = RubyRequestType_NULL;
|
|
RubyRequestType secondary_type = RubyRequestType_NULL;
|
|
|
|
if (pkt->isLLSC()) {
|
|
//
|
|
// Alpha LL/SC instructions need to be handled carefully by the cache
|
|
// coherence protocol to ensure they follow the proper semantics. In
|
|
// particular, by identifying the operations as atomic, the protocol
|
|
// should understand that migratory sharing optimizations should not
|
|
// be performed (i.e. a load between the LL and SC should not steal
|
|
// away exclusive permission).
|
|
//
|
|
if (pkt->isWrite()) {
|
|
DPRINTF(RubySequencer, "Issuing SC\n");
|
|
primary_type = RubyRequestType_Store_Conditional;
|
|
} else {
|
|
DPRINTF(RubySequencer, "Issuing LL\n");
|
|
assert(pkt->isRead());
|
|
primary_type = RubyRequestType_Load_Linked;
|
|
}
|
|
secondary_type = RubyRequestType_ATOMIC;
|
|
} else if (pkt->req->isLocked()) {
|
|
//
|
|
// x86 locked instructions are translated to store cache coherence
|
|
// requests because these requests should always be treated as read
|
|
// exclusive operations and should leverage any migratory sharing
|
|
// optimization built into the protocol.
|
|
//
|
|
if (pkt->isWrite()) {
|
|
DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
|
|
primary_type = RubyRequestType_Locked_RMW_Write;
|
|
} else {
|
|
DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
|
|
assert(pkt->isRead());
|
|
primary_type = RubyRequestType_Locked_RMW_Read;
|
|
}
|
|
secondary_type = RubyRequestType_ST;
|
|
} else {
|
|
if (pkt->isRead()) {
|
|
if (pkt->req->isInstFetch()) {
|
|
primary_type = secondary_type = RubyRequestType_IFETCH;
|
|
} else {
|
|
#if THE_ISA == X86_ISA
|
|
uint32_t flags = pkt->req->getFlags();
|
|
bool storeCheck = flags &
|
|
(TheISA::StoreCheck << TheISA::FlagShift);
|
|
#else
|
|
bool storeCheck = false;
|
|
#endif // X86_ISA
|
|
if (storeCheck) {
|
|
primary_type = RubyRequestType_RMW_Read;
|
|
secondary_type = RubyRequestType_ST;
|
|
} else {
|
|
primary_type = secondary_type = RubyRequestType_LD;
|
|
}
|
|
}
|
|
} else if (pkt->isWrite()) {
|
|
//
|
|
// Note: M5 packets do not differentiate ST from RMW_Write
|
|
//
|
|
primary_type = secondary_type = RubyRequestType_ST;
|
|
} else if (pkt->isFlush()) {
|
|
primary_type = secondary_type = RubyRequestType_FLUSH;
|
|
} else {
|
|
panic("Unsupported ruby packet type\n");
|
|
}
|
|
}
|
|
|
|
RequestStatus status = insertRequest(pkt, primary_type);
|
|
if (status != RequestStatus_Ready)
|
|
return status;
|
|
|
|
issueRequest(pkt, secondary_type);
|
|
|
|
// TODO: issue hardware prefetches here
|
|
return RequestStatus_Issued;
|
|
}
|
|
|
|
void
|
|
Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
|
|
{
|
|
int proc_id = -1;
|
|
if (pkt != NULL && pkt->req->hasContextId()) {
|
|
proc_id = pkt->req->contextId();
|
|
}
|
|
|
|
// If valid, copy the pc to the ruby request
|
|
Addr pc = 0;
|
|
if (pkt->req->hasPC()) {
|
|
pc = pkt->req->getPC();
|
|
}
|
|
|
|
RubyRequest *msg = new RubyRequest(pkt->getAddr(),
|
|
pkt->getPtr<uint8_t>(true),
|
|
pkt->getSize(), pc, secondary_type,
|
|
RubyAccessMode_Supervisor, pkt,
|
|
PrefetchBit_No, proc_id);
|
|
|
|
DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
|
|
curTick(), m_version, "Seq", "Begin", "", "",
|
|
msg->getPhysicalAddress(),
|
|
RubyRequestType_to_string(secondary_type));
|
|
|
|
Time latency = 0; // initialzed to an null value
|
|
|
|
if (secondary_type == RubyRequestType_IFETCH)
|
|
latency = m_instCache_ptr->getLatency();
|
|
else
|
|
latency = m_dataCache_ptr->getLatency();
|
|
|
|
// Send the message to the cache controller
|
|
assert(latency > 0);
|
|
|
|
assert(m_mandatory_q_ptr != NULL);
|
|
m_mandatory_q_ptr->enqueue(msg, latency);
|
|
}
|
|
|
|
template <class KEY, class VALUE>
|
|
std::ostream &
|
|
operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
|
|
{
|
|
typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
|
|
typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
|
|
|
|
out << "[";
|
|
for (; i != end; ++i)
|
|
out << " " << i->first << "=" << i->second;
|
|
out << " ]";
|
|
|
|
return out;
|
|
}
|
|
|
|
void
|
|
Sequencer::print(ostream& out) const
|
|
{
|
|
out << "[Sequencer: " << m_version
|
|
<< ", outstanding requests: " << m_outstanding_count
|
|
<< ", read request table: " << m_readRequestTable
|
|
<< ", write request table: " << m_writeRequestTable
|
|
<< "]";
|
|
}
|
|
|
|
// this can be called from setState whenever coherence permissions are
|
|
// upgraded when invoked, coherence violations will be checked for the
|
|
// given block
|
|
void
|
|
Sequencer::checkCoherence(const Address& addr)
|
|
{
|
|
#ifdef CHECK_COHERENCE
|
|
g_system_ptr->checkGlobalCoherenceInvariant(addr);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
Sequencer::recordRequestType(SequencerRequestType requestType) {
|
|
DPRINTF(RubyStats, "Recorded statistic: %s\n",
|
|
SequencerRequestType_to_string(requestType));
|
|
}
|
|
|
|
|
|
void
|
|
Sequencer::evictionCallback(const Address& address)
|
|
{
|
|
ruby_eviction_callback(address);
|
|
}
|