gem5/src/cpu/o3/rename_impl.hh

1359 lines
41 KiB
C++

/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
* Korey Sewell
*/
#include <list>
#include "arch/isa_traits.hh"
#include "arch/regfile.hh"
#include "config/full_system.hh"
#include "cpu/o3/rename.hh"
template <class Impl>
DefaultRename<Impl>::DefaultRename(O3CPU *_cpu, Params *params)
: cpu(_cpu),
iewToRenameDelay(params->iewToRenameDelay),
decodeToRenameDelay(params->decodeToRenameDelay),
commitToRenameDelay(params->commitToRenameDelay),
renameWidth(params->renameWidth),
commitWidth(params->commitWidth),
resumeSerialize(false),
resumeUnblocking(false),
numThreads(params->numberOfThreads),
maxPhysicalRegs(params->numPhysIntRegs + params->numPhysFloatRegs)
{
_status = Inactive;
for (int i=0; i< numThreads; i++) {
renameStatus[i] = Idle;
freeEntries[i].iqEntries = 0;
freeEntries[i].lsqEntries = 0;
freeEntries[i].robEntries = 0;
stalls[i].iew = false;
stalls[i].commit = false;
serializeInst[i] = NULL;
instsInProgress[i] = 0;
emptyROB[i] = true;
serializeOnNextInst[i] = false;
}
// @todo: Make into a parameter.
skidBufferMax = (2 * (iewToRenameDelay * params->decodeWidth)) + renameWidth;
}
template <class Impl>
std::string
DefaultRename<Impl>::name() const
{
return cpu->name() + ".rename";
}
template <class Impl>
void
DefaultRename<Impl>::regStats()
{
renameSquashCycles
.name(name() + ".RENAME:SquashCycles")
.desc("Number of cycles rename is squashing")
.prereq(renameSquashCycles);
renameIdleCycles
.name(name() + ".RENAME:IdleCycles")
.desc("Number of cycles rename is idle")
.prereq(renameIdleCycles);
renameBlockCycles
.name(name() + ".RENAME:BlockCycles")
.desc("Number of cycles rename is blocking")
.prereq(renameBlockCycles);
renameSerializeStallCycles
.name(name() + ".RENAME:serializeStallCycles")
.desc("count of cycles rename stalled for serializing inst")
.flags(Stats::total);
renameRunCycles
.name(name() + ".RENAME:RunCycles")
.desc("Number of cycles rename is running")
.prereq(renameIdleCycles);
renameUnblockCycles
.name(name() + ".RENAME:UnblockCycles")
.desc("Number of cycles rename is unblocking")
.prereq(renameUnblockCycles);
renameRenamedInsts
.name(name() + ".RENAME:RenamedInsts")
.desc("Number of instructions processed by rename")
.prereq(renameRenamedInsts);
renameSquashedInsts
.name(name() + ".RENAME:SquashedInsts")
.desc("Number of squashed instructions processed by rename")
.prereq(renameSquashedInsts);
renameROBFullEvents
.name(name() + ".RENAME:ROBFullEvents")
.desc("Number of times rename has blocked due to ROB full")
.prereq(renameROBFullEvents);
renameIQFullEvents
.name(name() + ".RENAME:IQFullEvents")
.desc("Number of times rename has blocked due to IQ full")
.prereq(renameIQFullEvents);
renameLSQFullEvents
.name(name() + ".RENAME:LSQFullEvents")
.desc("Number of times rename has blocked due to LSQ full")
.prereq(renameLSQFullEvents);
renameFullRegistersEvents
.name(name() + ".RENAME:FullRegisterEvents")
.desc("Number of times there has been no free registers")
.prereq(renameFullRegistersEvents);
renameRenamedOperands
.name(name() + ".RENAME:RenamedOperands")
.desc("Number of destination operands rename has renamed")
.prereq(renameRenamedOperands);
renameRenameLookups
.name(name() + ".RENAME:RenameLookups")
.desc("Number of register rename lookups that rename has made")
.prereq(renameRenameLookups);
renameCommittedMaps
.name(name() + ".RENAME:CommittedMaps")
.desc("Number of HB maps that are committed")
.prereq(renameCommittedMaps);
renameUndoneMaps
.name(name() + ".RENAME:UndoneMaps")
.desc("Number of HB maps that are undone due to squashing")
.prereq(renameUndoneMaps);
renamedSerializing
.name(name() + ".RENAME:serializingInsts")
.desc("count of serializing insts renamed")
.flags(Stats::total)
;
renamedTempSerializing
.name(name() + ".RENAME:tempSerializingInsts")
.desc("count of temporary serializing insts renamed")
.flags(Stats::total)
;
renameSkidInsts
.name(name() + ".RENAME:skidInsts")
.desc("count of insts added to the skid buffer")
.flags(Stats::total)
;
}
template <class Impl>
void
DefaultRename<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
timeBuffer = tb_ptr;
// Setup wire to read information from time buffer, from IEW stage.
fromIEW = timeBuffer->getWire(-iewToRenameDelay);
// Setup wire to read infromation from time buffer, from commit stage.
fromCommit = timeBuffer->getWire(-commitToRenameDelay);
// Setup wire to write information to previous stages.
toDecode = timeBuffer->getWire(0);
}
template <class Impl>
void
DefaultRename<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
{
renameQueue = rq_ptr;
// Setup wire to write information to future stages.
toIEW = renameQueue->getWire(0);
}
template <class Impl>
void
DefaultRename<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
{
decodeQueue = dq_ptr;
// Setup wire to get information from decode.
fromDecode = decodeQueue->getWire(-decodeToRenameDelay);
}
template <class Impl>
void
DefaultRename<Impl>::initStage()
{
// Grab the number of free entries directly from the stages.
for (int tid=0; tid < numThreads; tid++) {
freeEntries[tid].iqEntries = iew_ptr->instQueue.numFreeEntries(tid);
freeEntries[tid].lsqEntries = iew_ptr->ldstQueue.numFreeEntries(tid);
freeEntries[tid].robEntries = commit_ptr->numROBFreeEntries(tid);
emptyROB[tid] = true;
}
}
template<class Impl>
void
DefaultRename<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
{
activeThreads = at_ptr;
}
template <class Impl>
void
DefaultRename<Impl>::setRenameMap(RenameMap rm_ptr[])
{
for (int i=0; i<numThreads; i++) {
renameMap[i] = &rm_ptr[i];
}
}
template <class Impl>
void
DefaultRename<Impl>::setFreeList(FreeList *fl_ptr)
{
freeList = fl_ptr;
}
template<class Impl>
void
DefaultRename<Impl>::setScoreboard(Scoreboard *_scoreboard)
{
scoreboard = _scoreboard;
}
template <class Impl>
bool
DefaultRename<Impl>::drain()
{
// Rename is ready to switch out at any time.
cpu->signalDrained();
return true;
}
template <class Impl>
void
DefaultRename<Impl>::switchOut()
{
// Clear any state, fix up the rename map.
for (int i = 0; i < numThreads; i++) {
typename std::list<RenameHistory>::iterator hb_it =
historyBuffer[i].begin();
while (!historyBuffer[i].empty()) {
assert(hb_it != historyBuffer[i].end());
DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
"number %i.\n", i, (*hb_it).instSeqNum);
// Tell the rename map to set the architected register to the
// previous physical register that it was renamed to.
renameMap[i]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
// Put the renamed physical register back on the free list.
freeList->addReg(hb_it->newPhysReg);
// Be sure to mark its register as ready if it's a misc register.
if (hb_it->newPhysReg >= maxPhysicalRegs) {
scoreboard->setReg(hb_it->newPhysReg);
}
historyBuffer[i].erase(hb_it++);
}
insts[i].clear();
skidBuffer[i].clear();
}
}
template <class Impl>
void
DefaultRename<Impl>::takeOverFrom()
{
_status = Inactive;
initStage();
// Reset all state prior to taking over from the other CPU.
for (int i=0; i< numThreads; i++) {
renameStatus[i] = Idle;
stalls[i].iew = false;
stalls[i].commit = false;
serializeInst[i] = NULL;
instsInProgress[i] = 0;
emptyROB[i] = true;
serializeOnNextInst[i] = false;
}
}
template <class Impl>
void
DefaultRename<Impl>::squash(const InstSeqNum &squash_seq_num, unsigned tid)
{
DPRINTF(Rename, "[tid:%u]: Squashing instructions.\n",tid);
// Clear the stall signal if rename was blocked or unblocking before.
// If it still needs to block, the blocking should happen the next
// cycle and there should be space to hold everything due to the squash.
if (renameStatus[tid] == Blocked ||
renameStatus[tid] == Unblocking) {
toDecode->renameUnblock[tid] = 1;
resumeSerialize = false;
serializeInst[tid] = NULL;
} else if (renameStatus[tid] == SerializeStall) {
if (serializeInst[tid]->seqNum <= squash_seq_num) {
DPRINTF(Rename, "Rename will resume serializing after squash\n");
resumeSerialize = true;
assert(serializeInst[tid]);
} else {
resumeSerialize = false;
toDecode->renameUnblock[tid] = 1;
serializeInst[tid] = NULL;
}
}
// Set the status to Squashing.
renameStatus[tid] = Squashing;
// Squash any instructions from decode.
unsigned squashCount = 0;
for (int i=0; i<fromDecode->size; i++) {
if (fromDecode->insts[i]->threadNumber == tid &&
fromDecode->insts[i]->seqNum > squash_seq_num) {
fromDecode->insts[i]->setSquashed();
wroteToTimeBuffer = true;
squashCount++;
}
}
// Clear the instruction list and skid buffer in case they have any
// insts in them.
insts[tid].clear();
// Clear the skid buffer in case it has any data in it.
skidBuffer[tid].clear();
doSquash(squash_seq_num, tid);
}
template <class Impl>
void
DefaultRename<Impl>::tick()
{
wroteToTimeBuffer = false;
blockThisCycle = false;
bool status_change = false;
toIEWIndex = 0;
sortInsts();
std::list<unsigned>::iterator threads = activeThreads->begin();
std::list<unsigned>::iterator end = activeThreads->end();
// Check stall and squash signals.
while (threads != end) {
unsigned tid = *threads++;
DPRINTF(Rename, "Processing [tid:%i]\n", tid);
status_change = checkSignalsAndUpdate(tid) || status_change;
rename(status_change, tid);
}
if (status_change) {
updateStatus();
}
if (wroteToTimeBuffer) {
DPRINTF(Activity, "Activity this cycle.\n");
cpu->activityThisCycle();
}
threads = activeThreads->begin();
while (threads != end) {
unsigned tid = *threads++;
// If we committed this cycle then doneSeqNum will be > 0
if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
!fromCommit->commitInfo[tid].squash &&
renameStatus[tid] != Squashing) {
removeFromHistory(fromCommit->commitInfo[tid].doneSeqNum,
tid);
}
}
// @todo: make into updateProgress function
for (int tid=0; tid < numThreads; tid++) {
instsInProgress[tid] -= fromIEW->iewInfo[tid].dispatched;
assert(instsInProgress[tid] >=0);
}
}
template<class Impl>
void
DefaultRename<Impl>::rename(bool &status_change, unsigned tid)
{
// If status is Running or idle,
// call renameInsts()
// If status is Unblocking,
// buffer any instructions coming from decode
// continue trying to empty skid buffer
// check if stall conditions have passed
if (renameStatus[tid] == Blocked) {
++renameBlockCycles;
} else if (renameStatus[tid] == Squashing) {
++renameSquashCycles;
} else if (renameStatus[tid] == SerializeStall) {
++renameSerializeStallCycles;
// If we are currently in SerializeStall and resumeSerialize
// was set, then that means that we are resuming serializing
// this cycle. Tell the previous stages to block.
if (resumeSerialize) {
resumeSerialize = false;
block(tid);
toDecode->renameUnblock[tid] = false;
}
} else if (renameStatus[tid] == Unblocking) {
if (resumeUnblocking) {
block(tid);
resumeUnblocking = false;
toDecode->renameUnblock[tid] = false;
}
}
if (renameStatus[tid] == Running ||
renameStatus[tid] == Idle) {
DPRINTF(Rename, "[tid:%u]: Not blocked, so attempting to run "
"stage.\n", tid);
renameInsts(tid);
} else if (renameStatus[tid] == Unblocking) {
renameInsts(tid);
if (validInsts()) {
// Add the current inputs to the skid buffer so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
}
// If we switched over to blocking, then there's a potential for
// an overall status change.
status_change = unblock(tid) || status_change || blockThisCycle;
}
}
template <class Impl>
void
DefaultRename<Impl>::renameInsts(unsigned tid)
{
// Instructions can be either in the skid buffer or the queue of
// instructions coming from decode, depending on the status.
int insts_available = renameStatus[tid] == Unblocking ?
skidBuffer[tid].size() : insts[tid].size();
// Check the decode queue to see if instructions are available.
// If there are no available instructions to rename, then do nothing.
if (insts_available == 0) {
DPRINTF(Rename, "[tid:%u]: Nothing to do, breaking out early.\n",
tid);
// Should I change status to idle?
++renameIdleCycles;
return;
} else if (renameStatus[tid] == Unblocking) {
++renameUnblockCycles;
} else if (renameStatus[tid] == Running) {
++renameRunCycles;
}
DynInstPtr inst;
// Will have to do a different calculation for the number of free
// entries.
int free_rob_entries = calcFreeROBEntries(tid);
int free_iq_entries = calcFreeIQEntries(tid);
int free_lsq_entries = calcFreeLSQEntries(tid);
int min_free_entries = free_rob_entries;
FullSource source = ROB;
if (free_iq_entries < min_free_entries) {
min_free_entries = free_iq_entries;
source = IQ;
}
if (free_lsq_entries < min_free_entries) {
min_free_entries = free_lsq_entries;
source = LSQ;
}
// Check if there's any space left.
if (min_free_entries <= 0) {
DPRINTF(Rename, "[tid:%u]: Blocking due to no free ROB/IQ/LSQ "
"entries.\n"
"ROB has %i free entries.\n"
"IQ has %i free entries.\n"
"LSQ has %i free entries.\n",
tid,
free_rob_entries,
free_iq_entries,
free_lsq_entries);
blockThisCycle = true;
block(tid);
incrFullStat(source);
return;
} else if (min_free_entries < insts_available) {
DPRINTF(Rename, "[tid:%u]: Will have to block this cycle."
"%i insts available, but only %i insts can be "
"renamed due to ROB/IQ/LSQ limits.\n",
tid, insts_available, min_free_entries);
insts_available = min_free_entries;
blockThisCycle = true;
incrFullStat(source);
}
InstQueue &insts_to_rename = renameStatus[tid] == Unblocking ?
skidBuffer[tid] : insts[tid];
DPRINTF(Rename, "[tid:%u]: %i available instructions to "
"send iew.\n", tid, insts_available);
DPRINTF(Rename, "[tid:%u]: %i insts pipelining from Rename | %i insts "
"dispatched to IQ last cycle.\n",
tid, instsInProgress[tid], fromIEW->iewInfo[tid].dispatched);
// Handle serializing the next instruction if necessary.
if (serializeOnNextInst[tid]) {
if (emptyROB[tid] && instsInProgress[tid] == 0) {
// ROB already empty; no need to serialize.
serializeOnNextInst[tid] = false;
} else if (!insts_to_rename.empty()) {
insts_to_rename.front()->setSerializeBefore();
}
}
int renamed_insts = 0;
while (insts_available > 0 && toIEWIndex < renameWidth) {
DPRINTF(Rename, "[tid:%u]: Sending instructions to IEW.\n", tid);
assert(!insts_to_rename.empty());
inst = insts_to_rename.front();
insts_to_rename.pop_front();
if (renameStatus[tid] == Unblocking) {
DPRINTF(Rename,"[tid:%u]: Removing [sn:%lli] PC:%#x from rename "
"skidBuffer\n",
tid, inst->seqNum, inst->readPC());
}
if (inst->isSquashed()) {
DPRINTF(Rename, "[tid:%u]: instruction %i with PC %#x is "
"squashed, skipping.\n",
tid, inst->seqNum, inst->readPC());
++renameSquashedInsts;
// Decrement how many instructions are available.
--insts_available;
continue;
}
DPRINTF(Rename, "[tid:%u]: Processing instruction [sn:%lli] with "
"PC %#x.\n",
tid, inst->seqNum, inst->readPC());
// Handle serializeAfter/serializeBefore instructions.
// serializeAfter marks the next instruction as serializeBefore.
// serializeBefore makes the instruction wait in rename until the ROB
// is empty.
// In this model, IPR accesses are serialize before
// instructions, and store conditionals are serialize after
// instructions. This is mainly due to lack of support for
// out-of-order operations of either of those classes of
// instructions.
if ((inst->isIprAccess() || inst->isSerializeBefore()) &&
!inst->isSerializeHandled()) {
DPRINTF(Rename, "Serialize before instruction encountered.\n");
if (!inst->isTempSerializeBefore()) {
renamedSerializing++;
inst->setSerializeHandled();
} else {
renamedTempSerializing++;
}
// Change status over to SerializeStall so that other stages know
// what this is blocked on.
renameStatus[tid] = SerializeStall;
serializeInst[tid] = inst;
blockThisCycle = true;
break;
} else if ((inst->isStoreConditional() || inst->isSerializeAfter()) &&
!inst->isSerializeHandled()) {
DPRINTF(Rename, "Serialize after instruction encountered.\n");
renamedSerializing++;
inst->setSerializeHandled();
serializeAfter(insts_to_rename, tid);
}
// Check here to make sure there are enough destination registers
// to rename to. Otherwise block.
if (renameMap[tid]->numFreeEntries() < inst->numDestRegs()) {
DPRINTF(Rename, "Blocking due to lack of free "
"physical registers to rename to.\n");
blockThisCycle = true;
insts_to_rename.push_front(inst);
++renameFullRegistersEvents;
break;
}
renameSrcRegs(inst, inst->threadNumber);
renameDestRegs(inst, inst->threadNumber);
++renamed_insts;
// Put instruction in rename queue.
toIEW->insts[toIEWIndex] = inst;
++(toIEW->size);
// Increment which instruction we're on.
++toIEWIndex;
// Decrement how many instructions are available.
--insts_available;
}
instsInProgress[tid] += renamed_insts;
renameRenamedInsts += renamed_insts;
// If we wrote to the time buffer, record this.
if (toIEWIndex) {
wroteToTimeBuffer = true;
}
// Check if there's any instructions left that haven't yet been renamed.
// If so then block.
if (insts_available) {
blockThisCycle = true;
}
if (blockThisCycle) {
block(tid);
toDecode->renameUnblock[tid] = false;
}
}
template<class Impl>
void
DefaultRename<Impl>::skidInsert(unsigned tid)
{
DynInstPtr inst = NULL;
while (!insts[tid].empty()) {
inst = insts[tid].front();
insts[tid].pop_front();
assert(tid == inst->threadNumber);
DPRINTF(Rename, "[tid:%u]: Inserting [sn:%lli] PC:%#x into Rename "
"skidBuffer\n", tid, inst->seqNum, inst->readPC());
++renameSkidInsts;
skidBuffer[tid].push_back(inst);
}
if (skidBuffer[tid].size() > skidBufferMax)
{
typename InstQueue::iterator it;
warn("Skidbuffer contents:\n");
for(it = skidBuffer[tid].begin(); it != skidBuffer[tid].end(); it++)
{
warn("[tid:%u]: %s [sn:%i].\n", tid,
(*it)->staticInst->disassemble(inst->readPC()),
(*it)->seqNum);
}
panic("Skidbuffer Exceeded Max Size");
}
}
template <class Impl>
void
DefaultRename<Impl>::sortInsts()
{
int insts_from_decode = fromDecode->size;
#ifdef DEBUG
for (int i=0; i < numThreads; i++)
assert(insts[i].empty());
#endif
for (int i = 0; i < insts_from_decode; ++i) {
DynInstPtr inst = fromDecode->insts[i];
insts[inst->threadNumber].push_back(inst);
}
}
template<class Impl>
bool
DefaultRename<Impl>::skidsEmpty()
{
std::list<unsigned>::iterator threads = activeThreads->begin();
std::list<unsigned>::iterator end = activeThreads->end();
while (threads != end) {
unsigned tid = *threads++;
if (!skidBuffer[tid].empty())
return false;
}
return true;
}
template<class Impl>
void
DefaultRename<Impl>::updateStatus()
{
bool any_unblocking = false;
std::list<unsigned>::iterator threads = activeThreads->begin();
std::list<unsigned>::iterator end = activeThreads->end();
while (threads != end) {
unsigned tid = *threads++;
if (renameStatus[tid] == Unblocking) {
any_unblocking = true;
break;
}
}
// Rename will have activity if it's unblocking.
if (any_unblocking) {
if (_status == Inactive) {
_status = Active;
DPRINTF(Activity, "Activating stage.\n");
cpu->activateStage(O3CPU::RenameIdx);
}
} else {
// If it's not unblocking, then rename will not have any internal
// activity. Switch it to inactive.
if (_status == Active) {
_status = Inactive;
DPRINTF(Activity, "Deactivating stage.\n");
cpu->deactivateStage(O3CPU::RenameIdx);
}
}
}
template <class Impl>
bool
DefaultRename<Impl>::block(unsigned tid)
{
DPRINTF(Rename, "[tid:%u]: Blocking.\n", tid);
// Add the current inputs onto the skid buffer, so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
// Only signal backwards to block if the previous stages do not think
// rename is already blocked.
if (renameStatus[tid] != Blocked) {
// If resumeUnblocking is set, we unblocked during the squash,
// but now we're have unblocking status. We need to tell earlier
// stages to block.
if (resumeUnblocking || renameStatus[tid] != Unblocking) {
toDecode->renameBlock[tid] = true;
toDecode->renameUnblock[tid] = false;
wroteToTimeBuffer = true;
}
// Rename can not go from SerializeStall to Blocked, otherwise
// it would not know to complete the serialize stall.
if (renameStatus[tid] != SerializeStall) {
// Set status to Blocked.
renameStatus[tid] = Blocked;
return true;
}
}
return false;
}
template <class Impl>
bool
DefaultRename<Impl>::unblock(unsigned tid)
{
DPRINTF(Rename, "[tid:%u]: Trying to unblock.\n", tid);
// Rename is done unblocking if the skid buffer is empty.
if (skidBuffer[tid].empty() && renameStatus[tid] != SerializeStall) {
DPRINTF(Rename, "[tid:%u]: Done unblocking.\n", tid);
toDecode->renameUnblock[tid] = true;
wroteToTimeBuffer = true;
renameStatus[tid] = Running;
return true;
}
return false;
}
template <class Impl>
void
DefaultRename<Impl>::doSquash(const InstSeqNum &squashed_seq_num, unsigned tid)
{
typename std::list<RenameHistory>::iterator hb_it =
historyBuffer[tid].begin();
// After a syscall squashes everything, the history buffer may be empty
// but the ROB may still be squashing instructions.
if (historyBuffer[tid].empty()) {
return;
}
// Go through the most recent instructions, undoing the mappings
// they did and freeing up the registers.
while (!historyBuffer[tid].empty() &&
(*hb_it).instSeqNum > squashed_seq_num) {
assert(hb_it != historyBuffer[tid].end());
DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
"number %i.\n", tid, (*hb_it).instSeqNum);
// Tell the rename map to set the architected register to the
// previous physical register that it was renamed to.
renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
// Put the renamed physical register back on the free list.
freeList->addReg(hb_it->newPhysReg);
// Be sure to mark its register as ready if it's a misc register.
if (hb_it->newPhysReg >= maxPhysicalRegs) {
scoreboard->setReg(hb_it->newPhysReg);
}
historyBuffer[tid].erase(hb_it++);
++renameUndoneMaps;
}
}
template<class Impl>
void
DefaultRename<Impl>::removeFromHistory(InstSeqNum inst_seq_num, unsigned tid)
{
DPRINTF(Rename, "[tid:%u]: Removing a committed instruction from the "
"history buffer %u (size=%i), until [sn:%lli].\n",
tid, tid, historyBuffer[tid].size(), inst_seq_num);
typename std::list<RenameHistory>::iterator hb_it =
historyBuffer[tid].end();
--hb_it;
if (historyBuffer[tid].empty()) {
DPRINTF(Rename, "[tid:%u]: History buffer is empty.\n", tid);
return;
} else if (hb_it->instSeqNum > inst_seq_num) {
DPRINTF(Rename, "[tid:%u]: Old sequence number encountered. Ensure "
"that a syscall happened recently.\n", tid);
return;
}
// Commit all the renames up until (and including) the committed sequence
// number. Some or even all of the committed instructions may not have
// rename histories if they did not have destination registers that were
// renamed.
while (!historyBuffer[tid].empty() &&
hb_it != historyBuffer[tid].end() &&
(*hb_it).instSeqNum <= inst_seq_num) {
DPRINTF(Rename, "[tid:%u]: Freeing up older rename of reg %i, "
"[sn:%lli].\n",
tid, (*hb_it).prevPhysReg, (*hb_it).instSeqNum);
freeList->addReg((*hb_it).prevPhysReg);
++renameCommittedMaps;
historyBuffer[tid].erase(hb_it--);
}
}
template <class Impl>
inline void
DefaultRename<Impl>::renameSrcRegs(DynInstPtr &inst,unsigned tid)
{
assert(renameMap[tid] != 0);
unsigned num_src_regs = inst->numSrcRegs();
// Get the architectual register numbers from the source and
// destination operands, and redirect them to the right register.
// Will need to mark dependencies though.
for (int src_idx = 0; src_idx < num_src_regs; src_idx++) {
RegIndex src_reg = inst->srcRegIdx(src_idx);
RegIndex flat_src_reg = src_reg;
if (src_reg < TheISA::FP_Base_DepTag) {
flat_src_reg = TheISA::flattenIntIndex(inst->tcBase(), src_reg);
DPRINTF(Rename, "Flattening index %d to %d.\n", (int)src_reg, (int)flat_src_reg);
} else {
// Floating point and Miscellaneous registers need their indexes
// adjusted to account for the expanded number of flattened int regs.
flat_src_reg = src_reg - TheISA::FP_Base_DepTag + TheISA::NumIntRegs;
DPRINTF(Rename, "Adjusting reg index from %d to %d.\n", src_reg, flat_src_reg);
}
inst->flattenSrcReg(src_idx, flat_src_reg);
// Look up the source registers to get the phys. register they've
// been renamed to, and set the sources to those registers.
PhysRegIndex renamed_reg = renameMap[tid]->lookup(flat_src_reg);
DPRINTF(Rename, "[tid:%u]: Looking up arch reg %i, got "
"physical reg %i.\n", tid, (int)flat_src_reg,
(int)renamed_reg);
inst->renameSrcReg(src_idx, renamed_reg);
// See if the register is ready or not.
if (scoreboard->getReg(renamed_reg) == true) {
DPRINTF(Rename, "[tid:%u]: Register %d is ready.\n", tid, renamed_reg);
inst->markSrcRegReady(src_idx);
} else {
DPRINTF(Rename, "[tid:%u]: Register %d is not ready.\n", tid, renamed_reg);
}
++renameRenameLookups;
}
}
template <class Impl>
inline void
DefaultRename<Impl>::renameDestRegs(DynInstPtr &inst,unsigned tid)
{
typename RenameMap::RenameInfo rename_result;
unsigned num_dest_regs = inst->numDestRegs();
// Rename the destination registers.
for (int dest_idx = 0; dest_idx < num_dest_regs; dest_idx++) {
RegIndex dest_reg = inst->destRegIdx(dest_idx);
RegIndex flat_dest_reg = dest_reg;
if (dest_reg < TheISA::FP_Base_DepTag) {
// Integer registers are flattened.
flat_dest_reg = TheISA::flattenIntIndex(inst->tcBase(), dest_reg);
DPRINTF(Rename, "Flattening index %d to %d.\n", (int)dest_reg, (int)flat_dest_reg);
} else {
// Floating point and Miscellaneous registers need their indexes
// adjusted to account for the expanded number of flattened int regs.
flat_dest_reg = dest_reg - TheISA::FP_Base_DepTag + TheISA::NumIntRegs;
DPRINTF(Rename, "Adjusting reg index from %d to %d.\n", dest_reg, flat_dest_reg);
}
inst->flattenDestReg(dest_idx, flat_dest_reg);
// Get the physical register that the destination will be
// renamed to.
rename_result = renameMap[tid]->rename(flat_dest_reg);
//Mark Scoreboard entry as not ready
scoreboard->unsetReg(rename_result.first);
DPRINTF(Rename, "[tid:%u]: Renaming arch reg %i to physical "
"reg %i.\n", tid, (int)flat_dest_reg,
(int)rename_result.first);
// Record the rename information so that a history can be kept.
RenameHistory hb_entry(inst->seqNum, flat_dest_reg,
rename_result.first,
rename_result.second);
historyBuffer[tid].push_front(hb_entry);
DPRINTF(Rename, "[tid:%u]: Adding instruction to history buffer "
"(size=%i), [sn:%lli].\n",tid,
historyBuffer[tid].size(),
(*historyBuffer[tid].begin()).instSeqNum);
// Tell the instruction to rename the appropriate destination
// register (dest_idx) to the new physical register
// (rename_result.first), and record the previous physical
// register that the same logical register was renamed to
// (rename_result.second).
inst->renameDestReg(dest_idx,
rename_result.first,
rename_result.second);
++renameRenamedOperands;
}
}
template <class Impl>
inline int
DefaultRename<Impl>::calcFreeROBEntries(unsigned tid)
{
int num_free = freeEntries[tid].robEntries -
(instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
//DPRINTF(Rename,"[tid:%i]: %i rob free\n",tid,num_free);
return num_free;
}
template <class Impl>
inline int
DefaultRename<Impl>::calcFreeIQEntries(unsigned tid)
{
int num_free = freeEntries[tid].iqEntries -
(instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
//DPRINTF(Rename,"[tid:%i]: %i iq free\n",tid,num_free);
return num_free;
}
template <class Impl>
inline int
DefaultRename<Impl>::calcFreeLSQEntries(unsigned tid)
{
int num_free = freeEntries[tid].lsqEntries -
(instsInProgress[tid] - fromIEW->iewInfo[tid].dispatchedToLSQ);
//DPRINTF(Rename,"[tid:%i]: %i lsq free\n",tid,num_free);
return num_free;
}
template <class Impl>
unsigned
DefaultRename<Impl>::validInsts()
{
unsigned inst_count = 0;
for (int i=0; i<fromDecode->size; i++) {
if (!fromDecode->insts[i]->isSquashed())
inst_count++;
}
return inst_count;
}
template <class Impl>
void
DefaultRename<Impl>::readStallSignals(unsigned tid)
{
if (fromIEW->iewBlock[tid]) {
stalls[tid].iew = true;
}
if (fromIEW->iewUnblock[tid]) {
assert(stalls[tid].iew);
stalls[tid].iew = false;
}
if (fromCommit->commitBlock[tid]) {
stalls[tid].commit = true;
}
if (fromCommit->commitUnblock[tid]) {
assert(stalls[tid].commit);
stalls[tid].commit = false;
}
}
template <class Impl>
bool
DefaultRename<Impl>::checkStall(unsigned tid)
{
bool ret_val = false;
if (stalls[tid].iew) {
DPRINTF(Rename,"[tid:%i]: Stall from IEW stage detected.\n", tid);
ret_val = true;
} else if (stalls[tid].commit) {
DPRINTF(Rename,"[tid:%i]: Stall from Commit stage detected.\n", tid);
ret_val = true;
} else if (calcFreeROBEntries(tid) <= 0) {
DPRINTF(Rename,"[tid:%i]: Stall: ROB has 0 free entries.\n", tid);
ret_val = true;
} else if (calcFreeIQEntries(tid) <= 0) {
DPRINTF(Rename,"[tid:%i]: Stall: IQ has 0 free entries.\n", tid);
ret_val = true;
} else if (calcFreeLSQEntries(tid) <= 0) {
DPRINTF(Rename,"[tid:%i]: Stall: LSQ has 0 free entries.\n", tid);
ret_val = true;
} else if (renameMap[tid]->numFreeEntries() <= 0) {
DPRINTF(Rename,"[tid:%i]: Stall: RenameMap has 0 free entries.\n", tid);
ret_val = true;
} else if (renameStatus[tid] == SerializeStall &&
(!emptyROB[tid] || instsInProgress[tid])) {
DPRINTF(Rename,"[tid:%i]: Stall: Serialize stall and ROB is not "
"empty.\n",
tid);
ret_val = true;
}
return ret_val;
}
template <class Impl>
void
DefaultRename<Impl>::readFreeEntries(unsigned tid)
{
bool updated = false;
if (fromIEW->iewInfo[tid].usedIQ) {
freeEntries[tid].iqEntries =
fromIEW->iewInfo[tid].freeIQEntries;
updated = true;
}
if (fromIEW->iewInfo[tid].usedLSQ) {
freeEntries[tid].lsqEntries =
fromIEW->iewInfo[tid].freeLSQEntries;
updated = true;
}
if (fromCommit->commitInfo[tid].usedROB) {
freeEntries[tid].robEntries =
fromCommit->commitInfo[tid].freeROBEntries;
emptyROB[tid] = fromCommit->commitInfo[tid].emptyROB;
updated = true;
}
DPRINTF(Rename, "[tid:%i]: Free IQ: %i, Free ROB: %i, Free LSQ: %i\n",
tid,
freeEntries[tid].iqEntries,
freeEntries[tid].robEntries,
freeEntries[tid].lsqEntries);
DPRINTF(Rename, "[tid:%i]: %i instructions not yet in ROB\n",
tid, instsInProgress[tid]);
}
template <class Impl>
bool
DefaultRename<Impl>::checkSignalsAndUpdate(unsigned tid)
{
// Check if there's a squash signal, squash if there is
// Check stall signals, block if necessary.
// If status was blocked
// check if stall conditions have passed
// if so then go to unblocking
// If status was Squashing
// check if squashing is not high. Switch to running this cycle.
// If status was serialize stall
// check if ROB is empty and no insts are in flight to the ROB
readFreeEntries(tid);
readStallSignals(tid);
if (fromCommit->commitInfo[tid].squash) {
DPRINTF(Rename, "[tid:%u]: Squashing instructions due to squash from "
"commit.\n", tid);
squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
return true;
}
if (fromCommit->commitInfo[tid].robSquashing) {
DPRINTF(Rename, "[tid:%u]: ROB is still squashing.\n", tid);
renameStatus[tid] = Squashing;
return true;
}
if (checkStall(tid)) {
return block(tid);
}
if (renameStatus[tid] == Blocked) {
DPRINTF(Rename, "[tid:%u]: Done blocking, switching to unblocking.\n",
tid);
renameStatus[tid] = Unblocking;
unblock(tid);
return true;
}
if (renameStatus[tid] == Squashing) {
// Switch status to running if rename isn't being told to block or
// squash this cycle.
if (resumeSerialize) {
DPRINTF(Rename, "[tid:%u]: Done squashing, switching to serialize.\n",
tid);
renameStatus[tid] = SerializeStall;
return true;
} else if (resumeUnblocking) {
DPRINTF(Rename, "[tid:%u]: Done squashing, switching to unblocking.\n",
tid);
renameStatus[tid] = Unblocking;
return true;
} else {
DPRINTF(Rename, "[tid:%u]: Done squashing, switching to running.\n",
tid);
renameStatus[tid] = Running;
return false;
}
}
if (renameStatus[tid] == SerializeStall) {
// Stall ends once the ROB is free.
DPRINTF(Rename, "[tid:%u]: Done with serialize stall, switching to "
"unblocking.\n", tid);
DynInstPtr serial_inst = serializeInst[tid];
renameStatus[tid] = Unblocking;
unblock(tid);
DPRINTF(Rename, "[tid:%u]: Processing instruction [%lli] with "
"PC %#x.\n",
tid, serial_inst->seqNum, serial_inst->readPC());
// Put instruction into queue here.
serial_inst->clearSerializeBefore();
if (!skidBuffer[tid].empty()) {
skidBuffer[tid].push_front(serial_inst);
} else {
insts[tid].push_front(serial_inst);
}
DPRINTF(Rename, "[tid:%u]: Instruction must be processed by rename."
" Adding to front of list.\n", tid);
serializeInst[tid] = NULL;
return true;
}
// If we've reached this point, we have not gotten any signals that
// cause rename to change its status. Rename remains the same as before.
return false;
}
template<class Impl>
void
DefaultRename<Impl>::serializeAfter(InstQueue &inst_list,
unsigned tid)
{
if (inst_list.empty()) {
// Mark a bit to say that I must serialize on the next instruction.
serializeOnNextInst[tid] = true;
return;
}
// Set the next instruction as serializing.
inst_list.front()->setSerializeBefore();
}
template <class Impl>
inline void
DefaultRename<Impl>::incrFullStat(const FullSource &source)
{
switch (source) {
case ROB:
++renameROBFullEvents;
break;
case IQ:
++renameIQFullEvents;
break;
case LSQ:
++renameLSQFullEvents;
break;
default:
panic("Rename full stall stat should be incremented for a reason!");
break;
}
}
template <class Impl>
void
DefaultRename<Impl>::dumpHistory()
{
typename std::list<RenameHistory>::iterator buf_it;
for (int i = 0; i < numThreads; i++) {
buf_it = historyBuffer[i].begin();
while (buf_it != historyBuffer[i].end()) {
cprintf("Seq num: %i\nArch reg: %i New phys reg: %i Old phys "
"reg: %i\n", (*buf_it).instSeqNum, (int)(*buf_it).archReg,
(int)(*buf_it).newPhysReg, (int)(*buf_it).prevPhysReg);
buf_it++;
}
}
}