gem5/ext/nomali/lib/jobcontrol.cc
Andreas Sandberg c274057840 ext: Add the NoMali GPU no-simulation library
Add revision 9adf9d6e2d889a483a92136c96eb8a434d360561 of NoMali-model
from https://github.com/ARM-software/nomali-model. This library
implements the register interface of the Mali T6xx/T7xx series GPUs,
but doesn't do any rendering. It can be used to hide the effects of
software rendering.
2015-07-07 10:03:13 +01:00

139 lines
3.4 KiB
C++

/*
* Copyright (c) 2014-2015 ARM Limited
* All rights reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Authors: Andreas Sandberg
*/
#include "jobcontrol.hh"
#include "gpu.hh"
#include "regutils.hh"
namespace NoMali {
JobControl::JobControl(GPU &_gpu)
: GPUBlockInt(_gpu,
RegAddr(JOB_IRQ_RAWSTAT),
RegAddr(JOB_IRQ_CLEAR),
RegAddr(JOB_IRQ_MASK),
RegAddr(JOB_IRQ_STATUS))
{
slots.reserve(16);
for (int i = 0; i < 16; ++i)
slots.emplace_back(_gpu, *this, i);
}
JobControl::~JobControl()
{
}
uint32_t
JobControl::readReg(RegAddr addr)
{
if (addr >= RegAddr(JOB_SLOT0)) {
return slots[getJobSlotNo(addr)].readReg(getJobSlotAddr(addr));
} else {
return GPUBlockInt::readReg(addr);
}
}
void
JobControl::writeReg(RegAddr addr, uint32_t value)
{
switch(addr.value) {
case JOB_IRQ_CLEAR:
// Update JS state for all jobs that were affected by the IRQ
// clear
updateJsState((value & 0xFFFF) | ((value & 0xFFFF0000) >> 16));
// FALLTHROUGH - IRQ handling in base class
case JOB_IRQ_RAWSTAT:
case JOB_IRQ_MASK:
case JOB_IRQ_STATUS:
GPUBlockInt::writeReg(addr, value);
break;
default:
if (addr >= RegAddr(JOB_SLOT0))
slots[getJobSlotNo(addr)].writeReg(getJobSlotAddr(addr), value);
break;
}
}
uint32_t
JobControl::readRegRaw(RegAddr addr)
{
if (addr >= RegAddr(JOB_SLOT0)) {
return slots[getJobSlotNo(addr)].readRegRaw(getJobSlotAddr(addr));
} else {
return GPUBlockInt::readRegRaw(addr);
}
}
void
JobControl::writeRegRaw(RegAddr addr, uint32_t value)
{
if (addr >= RegAddr(JOB_SLOT0)) {
slots[getJobSlotNo(addr)].writeRegRaw(getJobSlotAddr(addr), value);
} else {
GPUBlockInt::writeRegRaw(addr, value);
}
}
void
JobControl::jobDone(uint8_t slot)
{
assert(slot <= 15);
raiseInterrupt(1 << slot);
}
void
JobControl::jobFailed(uint8_t slot)
{
assert(slot <= 15);
raiseInterrupt(0x10000 << slot);
}
void
JobControl::updateJsState(uint16_t jobs)
{
// The JS_STATE register contains two bits per job slot; one bit
// representing an active job and one bit representing the queued
// job. We need to mask out bits of the jobs affected by this update.
const uint32_t job_mask(jobs | (jobs << 16));
uint16_t js_state(regs[RegAddr(JOB_IRQ_JS_STATE)] & ~job_mask);
// Find if there is an active or active next job for all jobs in
// the job mask.
for (int i = 0; i < 16; ++i) {
const JobSlot &slot(slots[i]);
if (jobs & (1 << i)) {
js_state |= slot.active() ? (1 << i) : 0 |
slot.activeNext() ? (0x10000 << i) : 0;
}
}
regs[RegAddr(JOB_IRQ_JS_STATE)] = js_state;
}
void
JobControl::onInterrupt(int set)
{
gpu.intJob(set);
}
}