gem5/cpu/o3/alpha_cpu.hh
Kevin Lim a8b03e4d01 Updates for O3 model.
arch/alpha/isa/decoder.isa:
    Make IPR accessing instructions serializing so they are not issued incorrectly in the O3 model.
arch/alpha/isa/pal.isa:
    Allow IPR instructions to have flags.
base/traceflags.py:
    Include new trace flags from the two new CPU models.
cpu/SConscript:
    Create the templates for the split mem accessor methods.  Also include the new files from the new models (the Ozone model will be checked in next).
cpu/base_dyn_inst.cc:
cpu/base_dyn_inst.hh:
    Update to the BaseDynInst for the new models.

--HG--
extra : convert_revision : cc82db9c72ec3e29cea4c3fdff74a3843e287a35
2006-04-22 18:26:48 -04:00

450 lines
14 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_O3_ALPHA_FULL_CPU_HH__
#define __CPU_O3_ALPHA_FULL_CPU_HH__
#include "arch/isa_traits.hh"
#include "cpu/exec_context.hh"
#include "cpu/o3/cpu.hh"
#include "sim/byteswap.hh"
template <class Impl>
class AlphaFullCPU : public FullO3CPU<Impl>
{
protected:
typedef TheISA::IntReg IntReg;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::RegFile RegFile;
typedef TheISA::MiscRegFile MiscRegFile;
public:
typedef O3ThreadState<Impl> ImplState;
typedef O3ThreadState<Impl> Thread;
typedef typename Impl::Params Params;
/** Constructs an AlphaFullCPU with the given parameters. */
AlphaFullCPU(Params *params);
class AlphaXC : public ExecContext
{
public:
AlphaFullCPU<Impl> *cpu;
O3ThreadState<Impl> *thread;
Tick lastActivate;
Tick lastSuspend;
Event *quiesceEvent;
virtual BaseCPU *getCpuPtr() { return cpu; }
virtual void setCpuId(int id) { cpu->cpu_id = id; }
virtual int readCpuId() { return cpu->cpu_id; }
virtual FunctionalMemory *getMemPtr() { return thread->mem; }
#if FULL_SYSTEM
virtual System *getSystemPtr() { return cpu->system; }
virtual PhysicalMemory *getPhysMemPtr() { return cpu->physmem; }
virtual AlphaITB *getITBPtr() { return cpu->itb; }
virtual AlphaDTB * getDTBPtr() { return cpu->dtb; }
#else
virtual Process *getProcessPtr() { return thread->process; }
#endif
virtual Status status() const { return thread->status(); }
virtual void setStatus(Status new_status) { thread->setStatus(new_status); }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
virtual void activate(int delay = 1);
/// Set the status to Suspended.
virtual void suspend();
/// Set the status to Unallocated.
virtual void deallocate();
/// Set the status to Halted.
virtual void halt();
#if FULL_SYSTEM
virtual void dumpFuncProfile();
#endif
virtual void takeOverFrom(ExecContext *old_context);
virtual void regStats(const std::string &name);
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
#if FULL_SYSTEM
virtual Event *getQuiesceEvent();
// Not necessarily the best location for these...
// Having an extra function just to read these is obnoxious
virtual Tick readLastActivate();
virtual Tick readLastSuspend();
virtual void profileClear();
virtual void profileSample();
#endif
virtual int getThreadNum() { return thread->tid; }
// Also somewhat obnoxious. Really only used for the TLB fault.
// However, may be quite useful in SPARC.
virtual TheISA::MachInst getInst();
virtual void copyArchRegs(ExecContext *xc);
virtual void clearArchRegs();
//
// New accessors for new decoder.
//
virtual uint64_t readIntReg(int reg_idx);
virtual float readFloatRegSingle(int reg_idx);
virtual double readFloatRegDouble(int reg_idx);
virtual uint64_t readFloatRegInt(int reg_idx);
virtual void setIntReg(int reg_idx, uint64_t val);
virtual void setFloatRegSingle(int reg_idx, float val);
virtual void setFloatRegDouble(int reg_idx, double val);
virtual void setFloatRegInt(int reg_idx, uint64_t val);
virtual uint64_t readPC()
{ return cpu->readPC(thread->tid); }
virtual void setPC(uint64_t val);
virtual uint64_t readNextPC()
{ return cpu->readNextPC(thread->tid); }
virtual void setNextPC(uint64_t val);
virtual MiscReg readMiscReg(int misc_reg)
{ return cpu->readMiscReg(misc_reg, thread->tid); }
virtual MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{ return cpu->readMiscRegWithEffect(misc_reg, fault, thread->tid); }
virtual Fault setMiscReg(int misc_reg, const MiscReg &val);
virtual Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val);
// Also not necessarily the best location for these two.
// Hopefully will go away once we decide upon where st cond
// failures goes.
virtual unsigned readStCondFailures() { return thread->storeCondFailures; }
virtual void setStCondFailures(unsigned sc_failures) { thread->storeCondFailures = sc_failures; }
#if FULL_SYSTEM
virtual bool inPalMode() { return TheISA::PcPAL(cpu->readPC(thread->tid)); }
#endif
// Only really makes sense for old CPU model. Still could be useful though.
virtual bool misspeculating() { return false; }
#if !FULL_SYSTEM
virtual IntReg getSyscallArg(int i);
// used to shift args for indirect syscall
virtual void setSyscallArg(int i, IntReg val);
virtual void setSyscallReturn(SyscallReturn return_value);
virtual void syscall() { return cpu->syscall(thread->tid); }
// Same with st cond failures.
virtual Counter readFuncExeInst() { return thread->funcExeInst; }
#endif
};
friend class AlphaXC;
std::vector<AlphaXC *> xcProxies;
#if FULL_SYSTEM
/** ITB pointer. */
AlphaITB *itb;
/** DTB pointer. */
AlphaDTB *dtb;
#endif
/** Registers statistics. */
void regStats();
#if FULL_SYSTEM
//Note that the interrupt stuff from the base CPU might be somewhat
//ISA specific (ie NumInterruptLevels). These functions might not
//be needed in FullCPU though.
// void post_interrupt(int int_num, int index);
// void clear_interrupt(int int_num, int index);
// void clear_interrupts();
/** Translates instruction requestion. */
Fault translateInstReq(MemReqPtr &req)
{
return itb->translate(req);
}
/** Translates data read request. */
Fault translateDataReadReq(MemReqPtr &req)
{
return dtb->translate(req, false);
}
/** Translates data write request. */
Fault translateDataWriteReq(MemReqPtr &req)
{
return dtb->translate(req, true);
}
#else
Fault dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return NoFault;
}
/** Translates instruction requestion in syscall emulation mode. */
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data read request in syscall emulation mode. */
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data write request in syscall emulation mode. */
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#endif
// Later on may want to remove this misc stuff from the regfile and
// have it handled at this level. This would be similar to moving certain
// IPRs into the devices themselves. Might prove to be an issue when
// trying to rename source/destination registers...
MiscReg readMiscReg(int misc_reg, unsigned tid);
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault, unsigned tid);
Fault setMiscReg(int misc_reg, const MiscReg &val, unsigned tid);
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val, unsigned tid);
void squashFromXC(unsigned tid);
#if FULL_SYSTEM
void post_interrupt(int int_num, int index);
int readIntrFlag();
/** Sets the interrupt flags. */
void setIntrFlag(int val);
/** HW return from error interrupt. */
Fault hwrei(unsigned tid);
/** Returns if a specific PC is a PAL mode PC. */
bool inPalMode(uint64_t PC)
{ return AlphaISA::PcPAL(PC); }
/** Traps to handle given fault. */
void trap(Fault fault, unsigned tid);
bool simPalCheck(int palFunc);
/** Processes any interrupts. */
void processInterrupts();
#endif
#if !FULL_SYSTEM
// Need to change these into regfile calls that directly set a certain
// register. Actually, these functions should handle most of this
// functionality by themselves; should look up the rename and then
// set the register.
/** Gets a syscall argument. */
IntReg getSyscallArg(int i, int tid);
/** Used to shift args for indirect syscall. */
void setSyscallArg(int i, IntReg val, int tid);
/** Sets the return value of a syscall. */
void setSyscallReturn(SyscallReturn return_value, int tid);
/** Executes a syscall.
* @todo: Determine if this needs to be virtual.
*/
virtual void syscall(int thread_num);
#endif
public:
#if FULL_SYSTEM
/** Halts the CPU. */
void halt() { panic("Halt not implemented!\n"); }
#endif
/** Old CPU read from memory function. No longer used. */
template <class T>
Fault read(MemReqPtr &req, T &data)
{
// panic("CPU READ NOT IMPLEMENTED W/NEW MEMORY\n");
#if 0
#if FULL_SYSTEM && defined(TARGET_ALPHA)
if (req->flags & LOCKED) {
req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
}
#endif
#endif
Fault error;
if (req->flags & LOCKED) {
lockAddr = req->paddr;
lockFlag = true;
}
error = this->mem->read(req, data);
data = gtoh(data);
return error;
}
/** CPU read function, forwards read to LSQ. */
template <class T>
Fault read(MemReqPtr &req, T &data, int load_idx)
{
return this->iew.ldstQueue.read(req, data, load_idx);
}
/** Old CPU write to memory function. No longer used. */
template <class T>
Fault write(MemReqPtr &req, T &data)
{
#if 0
#if FULL_SYSTEM && defined(TARGET_ALPHA)
ExecContext *xc;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
xc = req->xc;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
xc->setStCondFailures(0);//Needed? [RGD]
} else {
bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
req->result = lock_flag;
if (!lock_flag ||
((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
xc->setStCondFailures(xc->readStCondFailures() + 1);
if (((xc->readStCondFailures()) % 100000) == 0) {
std::cerr << "Warning: "
<< xc->readStCondFailures()
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->readCpuId()
<< std::endl;
}
return NoFault;
}
else xc->setStCondFailures(0);
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < this->system->execContexts.size(); i++){
xc = this->system->execContexts[i];
if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
(req->paddr & ~0xf)) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
}
}
#endif
#endif
if (req->flags & LOCKED) {
if (req->flags & UNCACHEABLE) {
req->result = 2;
} else {
if (this->lockFlag/* && this->lockAddr == req->paddr*/) {
req->result=1;
} else {
req->result = 0;
}
}
}
return this->mem->write(req, (T)htog(data));
}
/** CPU write function, forwards write to LSQ. */
template <class T>
Fault write(MemReqPtr &req, T &data, int store_idx)
{
return this->iew.ldstQueue.write(req, data, store_idx);
}
Addr lockAddr;
bool lockFlag;
};
#endif // __CPU_O3_ALPHA_FULL_CPU_HH__