gem5/src/mem/bus.cc
Andreas Hansson beed20d7bc MEM: Use base class Master/SlavePort pointers in the bus
This patch makes some rather trivial simplifications to the bus in
that it changes the use of BusMasterPort and BusSlavePort pointers to
simply use MasterPort and SlavePort (iterators are also updated
accordingly).

This change is a step towards a future patch that introduces a
separation of the interface and the structural port itself.
2012-04-25 10:45:23 -04:00

863 lines
29 KiB
C++

/*
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Andreas Hansson
* William Wang
*/
/**
* @file
* Definition of a bus object.
*/
#include "base/misc.hh"
#include "base/trace.hh"
#include "debug/Bus.hh"
#include "debug/BusAddrRanges.hh"
#include "mem/bus.hh"
Bus::Bus(const BusParams *p)
: MemObject(p), clock(p->clock),
headerCycles(p->header_cycles), width(p->width), tickNextIdle(0),
drainEvent(NULL), busIdleEvent(this), inRetry(false),
defaultPortId(Port::INVALID_PORT_ID),
useDefaultRange(p->use_default_range),
defaultBlockSize(p->block_size),
cachedBlockSize(0), cachedBlockSizeValid(false)
{
//width, clock period, and header cycles must be positive
if (width <= 0)
fatal("Bus width must be positive\n");
if (clock <= 0)
fatal("Bus clock period must be positive\n");
if (headerCycles <= 0)
fatal("Number of header cycles must be positive\n");
// create the ports based on the size of the master and slave
// vector ports, and the presence of the default port, the ports
// are enumerated starting from zero
for (int i = 0; i < p->port_master_connection_count; ++i) {
std::string portName = csprintf("%s-p%d", name(), i);
MasterPort* bp = new BusMasterPort(portName, this, i);
masterPorts.push_back(bp);
}
// see if we have a default slave device connected and if so add
// our corresponding master port
if (p->port_default_connection_count) {
defaultPortId = masterPorts.size();
std::string portName = csprintf("%s-default", name());
MasterPort* bp = new BusMasterPort(portName, this, defaultPortId);
masterPorts.push_back(bp);
}
// create the slave ports, once again starting at zero
for (int i = 0; i < p->port_slave_connection_count; ++i) {
std::string portName = csprintf("%s-p%d", name(), i);
SlavePort* bp = new BusSlavePort(portName, this, i);
slavePorts.push_back(bp);
}
clearPortCache();
}
MasterPort &
Bus::getMasterPort(const std::string &if_name, int idx)
{
if (if_name == "master" && idx < masterPorts.size()) {
// the master port index translates directly to the vector position
return *masterPorts[idx];
} else if (if_name == "default") {
return *masterPorts[defaultPortId];
} else {
return MemObject::getMasterPort(if_name, idx);
}
}
SlavePort &
Bus::getSlavePort(const std::string &if_name, int idx)
{
if (if_name == "slave" && idx < slavePorts.size()) {
// the slave port index translates directly to the vector position
return *slavePorts[idx];
} else {
return MemObject::getSlavePort(if_name, idx);
}
}
void
Bus::init()
{
// iterate over our slave ports and determine which of our
// neighbouring master ports are snooping and add them as snoopers
for (SlavePortConstIter p = slavePorts.begin(); p != slavePorts.end();
++p) {
if ((*p)->getMasterPort().isSnooping()) {
DPRINTF(BusAddrRanges, "Adding snooping neighbour %s\n",
(*p)->getMasterPort().name());
snoopPorts.push_back(*p);
}
}
}
Tick
Bus::calcPacketTiming(PacketPtr pkt)
{
// determine the current time rounded to the closest following
// clock edge
Tick now = curTick();
if (now % clock != 0) {
now = ((now / clock) + 1) * clock;
}
Tick headerTime = now + headerCycles * clock;
// The packet will be sent. Figure out how long it occupies the bus, and
// how much of that time is for the first "word", aka bus width.
int numCycles = 0;
if (pkt->hasData()) {
// If a packet has data, it needs ceil(size/width) cycles to send it
int dataSize = pkt->getSize();
numCycles += dataSize/width;
if (dataSize % width)
numCycles++;
}
// The first word will be delivered after the current tick, the delivery
// of the address if any, and one bus cycle to deliver the data
pkt->firstWordTime = headerTime + clock;
pkt->finishTime = headerTime + numCycles * clock;
return headerTime;
}
void Bus::occupyBus(Tick until)
{
if (until == 0) {
// shortcut for express snoop packets
return;
}
tickNextIdle = until;
reschedule(busIdleEvent, tickNextIdle, true);
DPRINTF(Bus, "The bus is now occupied from tick %d to %d\n",
curTick(), tickNextIdle);
}
bool
Bus::isOccupied(PacketPtr pkt, Port* port)
{
// first we see if the next idle tick is in the future, next the
// bus is considered occupied if there are ports on the retry list
// and we are not in a retry with the current port
if (tickNextIdle > curTick() ||
(!retryList.empty() && !(inRetry && port == retryList.front()))) {
addToRetryList(port);
return true;
}
return false;
}
bool
Bus::recvTiming(PacketPtr pkt)
{
// get the source id
Packet::NodeID src_id = pkt->getSrc();
// determine the source port based on the id and direction
Port *src_port = NULL;
if (pkt->isRequest())
src_port = slavePorts[src_id];
else
src_port = masterPorts[src_id];
// test if the bus should be considered occupied for the current
// packet, and exclude express snoops from the check
if (!pkt->isExpressSnoop() && isOccupied(pkt, src_port)) {
DPRINTF(Bus, "recvTiming: src %s %s 0x%x BUSY\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
return false;
}
DPRINTF(Bus, "recvTiming: src %s %s 0x%x\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
Tick headerFinishTime = pkt->isExpressSnoop() ? 0 : calcPacketTiming(pkt);
Tick packetFinishTime = pkt->isExpressSnoop() ? 0 : pkt->finishTime;
// decide what to do based on the direction
if (pkt->isRequest()) {
// the packet is a memory-mapped request and should be
// broadcasted to our snoopers but the source
forwardTiming(pkt, src_id);
// remember if we add an outstanding req so we can undo it if
// necessary, if the packet needs a response, we should add it
// as outstanding and express snoops never fail so there is
// not need to worry about them
bool add_outstanding = !pkt->isExpressSnoop() && pkt->needsResponse();
// keep track that we have an outstanding request packet
// matching this request, this is used by the coherency
// mechanism in determining what to do with snoop responses
// (in recvTimingSnoop)
if (add_outstanding) {
// we should never have an exsiting request outstanding
assert(outstandingReq.find(pkt->req) == outstandingReq.end());
outstandingReq.insert(pkt->req);
}
// since it is a normal request, determine the destination
// based on the address and attempt to send the packet
bool success = masterPorts[findPort(pkt->getAddr())]->sendTiming(pkt);
if (!success) {
// inhibited packets should never be forced to retry
assert(!pkt->memInhibitAsserted());
// if it was added as outstanding and the send failed, then
// erase it again
if (add_outstanding)
outstandingReq.erase(pkt->req);
DPRINTF(Bus, "recvTiming: src %s %s 0x%x RETRY\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
addToRetryList(src_port);
occupyBus(headerFinishTime);
return false;
}
} else {
// the packet is a normal response to a request that we should
// have seen passing through the bus
assert(outstandingReq.find(pkt->req) != outstandingReq.end());
// remove it as outstanding
outstandingReq.erase(pkt->req);
// send the packet to the destination through one of our slave
// ports, as determined by the destination field
bool success M5_VAR_USED = slavePorts[pkt->getDest()]->sendTiming(pkt);
// currently it is illegal to block responses... can lead to
// deadlock
assert(success);
}
succeededTiming(packetFinishTime);
return true;
}
bool
Bus::recvTimingSnoop(PacketPtr pkt)
{
// get the source id
Packet::NodeID src_id = pkt->getSrc();
if (pkt->isRequest()) {
DPRINTF(Bus, "recvTimingSnoop: src %d %s 0x%x\n",
src_id, pkt->cmdString(), pkt->getAddr());
// the packet is an express snoop request and should be
// broadcasted to our snoopers
assert(pkt->isExpressSnoop());
// forward to all snoopers
forwardTiming(pkt, Port::INVALID_PORT_ID);
// a snoop request came from a connected slave device (one of
// our master ports), and if it is not coming from the slave
// device responsible for the address range something is
// wrong, hence there is nothing further to do as the packet
// would be going back to where it came from
assert(src_id == findPort(pkt->getAddr()));
// this is an express snoop and is never forced to retry
assert(!inRetry);
return true;
} else {
// determine the source port based on the id
SlavePort* src_port = slavePorts[src_id];
if (isOccupied(pkt, src_port)) {
DPRINTF(Bus, "recvTimingSnoop: src %s %s 0x%x BUSY\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
return false;
}
DPRINTF(Bus, "recvTimingSnoop: src %s %s 0x%x\n",
src_port->name(), pkt->cmdString(), pkt->getAddr());
// get the destination from the packet
Packet::NodeID dest = pkt->getDest();
// responses are never express snoops
assert(!pkt->isExpressSnoop());
calcPacketTiming(pkt);
Tick packetFinishTime = pkt->finishTime;
// determine if the response is from a snoop request we
// created as the result of a normal request (in which case it
// should be in the outstandingReq), or if we merely forwarded
// someone else's snoop request
if (outstandingReq.find(pkt->req) == outstandingReq.end()) {
// this is a snoop response to a snoop request we
// forwarded, e.g. coming from the L1 and going to the L2
// this should be forwarded as a snoop response
bool success M5_VAR_USED = masterPorts[dest]->sendTimingSnoop(pkt);
assert(success);
} else {
// we got a snoop response on one of our slave ports,
// i.e. from a coherent master connected to the bus, and
// since we created the snoop request as part of
// recvTiming, this should now be a normal response again
outstandingReq.erase(pkt->req);
// this is a snoop response from a coherent master, with a
// destination field set on its way through the bus as
// request, hence it should never go back to where the
// snoop response came from, but instead to where the
// original request came from
assert(src_id != dest);
// as a normal response, it should go back to a master
// through one of our slave ports
bool success M5_VAR_USED = slavePorts[dest]->sendTiming(pkt);
// currently it is illegal to block responses... can lead
// to deadlock
assert(success);
}
succeededTiming(packetFinishTime);
return true;
}
}
void
Bus::succeededTiming(Tick busy_time)
{
// occupy the bus accordingly
occupyBus(busy_time);
// if a retrying port succeeded, also take it off the retry list
if (inRetry) {
DPRINTF(Bus, "Remove retry from list %s\n",
retryList.front()->name());
retryList.pop_front();
inRetry = false;
}
}
void
Bus::forwardTiming(PacketPtr pkt, int exclude_slave_port_id)
{
for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) {
SlavePort *p = *s;
// we could have gotten this request from a snooping master
// (corresponding to our own slave port that is also in
// snoopPorts) and should not send it back to where it came
// from
if (exclude_slave_port_id == Port::INVALID_PORT_ID ||
p->getId() != exclude_slave_port_id) {
// cache is not allowed to refuse snoop
bool success M5_VAR_USED = p->sendTimingSnoop(pkt);
assert(success);
}
}
}
void
Bus::releaseBus()
{
// releasing the bus means we should now be idle
assert(curTick() >= tickNextIdle);
// bus is now idle, so if someone is waiting we can retry
if (!retryList.empty()) {
// note that we block (return false on recvTiming) both
// because the bus is busy and because the destination is
// busy, and in the latter case the bus may be released before
// we see a retry from the destination
retryWaiting();
}
//If we weren't able to drain before, we might be able to now.
if (drainEvent && retryList.empty() && curTick() >= tickNextIdle) {
drainEvent->process();
// Clear the drain event once we're done with it.
drainEvent = NULL;
}
}
void
Bus::retryWaiting()
{
// this should never be called with an empty retry list
assert(!retryList.empty());
// send a retry to the port at the head of the retry list
inRetry = true;
// note that we might have blocked on the receiving port being
// busy (rather than the bus itself) and now call retry before the
// destination called retry on the bus
retryList.front()->sendRetry();
// If inRetry is still true, sendTiming wasn't called in zero time
// (e.g. the cache does this)
if (inRetry) {
retryList.pop_front();
inRetry = false;
//Bring tickNextIdle up to the present
while (tickNextIdle < curTick())
tickNextIdle += clock;
//Burn a cycle for the missed grant.
tickNextIdle += clock;
reschedule(busIdleEvent, tickNextIdle, true);
}
}
void
Bus::recvRetry(Port::PortId id)
{
// we got a retry from a peer that we tried to send something to
// and failed, but we sent it on the account of someone else, and
// that source port should be on our retry list, however if the
// bus is released before this happens and the retry (from the bus
// point of view) is successful then this no longer holds and we
// could in fact have an empty retry list
if (retryList.empty())
return;
// if the bus isn't busy
if (curTick() >= tickNextIdle) {
// note that we do not care who told us to retry at the moment, we
// merely let the first one on the retry list go
retryWaiting();
}
}
int
Bus::findPort(Addr addr)
{
/* An interval tree would be a better way to do this. --ali. */
int dest_id;
dest_id = checkPortCache(addr);
if (dest_id != Port::INVALID_PORT_ID)
return dest_id;
// Check normal port ranges
PortIter i = portMap.find(RangeSize(addr,1));
if (i != portMap.end()) {
dest_id = i->second;
updatePortCache(dest_id, i->first.start, i->first.end);
return dest_id;
}
// Check if this matches the default range
if (useDefaultRange) {
AddrRangeIter a_end = defaultRange.end();
for (AddrRangeIter i = defaultRange.begin(); i != a_end; i++) {
if (*i == addr) {
DPRINTF(Bus, " found addr %#llx on default\n", addr);
return defaultPortId;
}
}
} else if (defaultPortId != Port::INVALID_PORT_ID) {
DPRINTF(Bus, "Unable to find destination for addr %#llx, "
"will use default port\n", addr);
return defaultPortId;
}
// we should use the range for the default port and it did not
// match, or the default port is not set
fatal("Unable to find destination for addr %#llx on bus %s\n", addr,
name());
}
Tick
Bus::recvAtomic(PacketPtr pkt)
{
DPRINTF(Bus, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
slavePorts[pkt->getSrc()]->name(), pkt->getAddr(),
pkt->cmdString());
// we should always see a request routed based on the address
assert(pkt->isRequest());
// forward to all snoopers but the source
std::pair<MemCmd, Tick> snoop_result = forwardAtomic(pkt, pkt->getSrc());
MemCmd snoop_response_cmd = snoop_result.first;
Tick snoop_response_latency = snoop_result.second;
// even if we had a snoop response, we must continue and also
// perform the actual request at the destination
int dest_id = findPort(pkt->getAddr());
// forward the request to the appropriate destination
Tick response_latency = masterPorts[dest_id]->sendAtomic(pkt);
// if we got a response from a snooper, restore it here
if (snoop_response_cmd != MemCmd::InvalidCmd) {
// no one else should have responded
assert(!pkt->isResponse());
pkt->cmd = snoop_response_cmd;
response_latency = snoop_response_latency;
}
pkt->finishTime = curTick() + response_latency;
return response_latency;
}
Tick
Bus::recvAtomicSnoop(PacketPtr pkt)
{
DPRINTF(Bus, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
masterPorts[pkt->getSrc()]->name(), pkt->getAddr(),
pkt->cmdString());
// we should always see a request routed based on the address
assert(pkt->isRequest());
// forward to all snoopers
std::pair<MemCmd, Tick> snoop_result =
forwardAtomic(pkt, Port::INVALID_PORT_ID);
MemCmd snoop_response_cmd = snoop_result.first;
Tick snoop_response_latency = snoop_result.second;
if (snoop_response_cmd != MemCmd::InvalidCmd)
pkt->cmd = snoop_response_cmd;
pkt->finishTime = curTick() + snoop_response_latency;
return snoop_response_latency;
}
std::pair<MemCmd, Tick>
Bus::forwardAtomic(PacketPtr pkt, int exclude_slave_port_id)
{
// the packet may be changed on snoops, record the original source
// and command to enable us to restore it between snoops so that
// additional snoops can take place properly
Packet::NodeID orig_src_id = pkt->getSrc();
MemCmd orig_cmd = pkt->cmd;
MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
Tick snoop_response_latency = 0;
for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) {
SlavePort *p = *s;
// we could have gotten this request from a snooping master
// (corresponding to our own slave port that is also in
// snoopPorts) and should not send it back to where it came
// from
if (exclude_slave_port_id == Port::INVALID_PORT_ID ||
p->getId() != exclude_slave_port_id) {
Tick latency = p->sendAtomicSnoop(pkt);
// in contrast to a functional access, we have to keep on
// going as all snoopers must be updated even if we get a
// response
if (pkt->isResponse()) {
// response from snoop agent
assert(pkt->cmd != orig_cmd);
assert(pkt->memInhibitAsserted());
// should only happen once
assert(snoop_response_cmd == MemCmd::InvalidCmd);
// save response state
snoop_response_cmd = pkt->cmd;
snoop_response_latency = latency;
// restore original packet state for remaining snoopers
pkt->cmd = orig_cmd;
pkt->setSrc(orig_src_id);
pkt->clearDest();
}
}
}
// the packet is restored as part of the loop and any potential
// snoop response is part of the returned pair
return std::make_pair(snoop_response_cmd, snoop_response_latency);
}
void
Bus::recvFunctional(PacketPtr pkt)
{
if (!pkt->isPrint()) {
// don't do DPRINTFs on PrintReq as it clutters up the output
DPRINTF(Bus,
"recvFunctional: packet src %s addr 0x%x cmd %s\n",
slavePorts[pkt->getSrc()]->name(), pkt->getAddr(),
pkt->cmdString());
}
// we should always see a request routed based on the address
assert(pkt->isRequest());
// forward to all snoopers but the source
forwardFunctional(pkt, pkt->getSrc());
// there is no need to continue if the snooping has found what we
// were looking for and the packet is already a response
if (!pkt->isResponse()) {
int dest_id = findPort(pkt->getAddr());
masterPorts[dest_id]->sendFunctional(pkt);
}
}
void
Bus::recvFunctionalSnoop(PacketPtr pkt)
{
if (!pkt->isPrint()) {
// don't do DPRINTFs on PrintReq as it clutters up the output
DPRINTF(Bus,
"recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
masterPorts[pkt->getSrc()]->name(), pkt->getAddr(),
pkt->cmdString());
}
// we should always see a request routed based on the address
assert(pkt->isRequest());
// forward to all snoopers
forwardFunctional(pkt, Port::INVALID_PORT_ID);
}
void
Bus::forwardFunctional(PacketPtr pkt, int exclude_slave_port_id)
{
for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) {
SlavePort *p = *s;
// we could have gotten this request from a snooping master
// (corresponding to our own slave port that is also in
// snoopPorts) and should not send it back to where it came
// from
if (exclude_slave_port_id == Port::INVALID_PORT_ID ||
p->getId() != exclude_slave_port_id)
p->sendFunctionalSnoop(pkt);
// if we get a response we are done
if (pkt->isResponse()) {
break;
}
}
}
/** Function called by the port when the bus is receiving a range change.*/
void
Bus::recvRangeChange(Port::PortId id)
{
AddrRangeList ranges;
AddrRangeIter iter;
if (inRecvRangeChange.count(id))
return;
inRecvRangeChange.insert(id);
DPRINTF(BusAddrRanges, "received RangeChange from device id %d\n", id);
clearPortCache();
if (id == defaultPortId) {
defaultRange.clear();
// Only try to update these ranges if the user set a default responder.
if (useDefaultRange) {
AddrRangeList ranges =
masterPorts[id]->getSlavePort().getAddrRanges();
for(iter = ranges.begin(); iter != ranges.end(); iter++) {
defaultRange.push_back(*iter);
DPRINTF(BusAddrRanges, "Adding range %#llx - %#llx for default range\n",
iter->start, iter->end);
}
}
} else {
assert(id < masterPorts.size() && id >= 0);
MasterPort *port = masterPorts[id];
// Clean out any previously existent ids
for (PortIter portIter = portMap.begin();
portIter != portMap.end(); ) {
if (portIter->second == id)
portMap.erase(portIter++);
else
portIter++;
}
ranges = port->getSlavePort().getAddrRanges();
for (iter = ranges.begin(); iter != ranges.end(); iter++) {
DPRINTF(BusAddrRanges, "Adding range %#llx - %#llx for id %d\n",
iter->start, iter->end, id);
if (portMap.insert(*iter, id) == portMap.end()) {
int conflict_id = portMap.find(*iter)->second;
fatal("%s has two ports with same range:\n\t%s\n\t%s\n",
name(), masterPorts[id]->getSlavePort().name(),
masterPorts[conflict_id]->getSlavePort().name());
}
}
}
DPRINTF(BusAddrRanges, "port list has %d entries\n", portMap.size());
// tell all our neighbouring master ports that our address range
// has changed
for (SlavePortConstIter p = slavePorts.begin(); p != slavePorts.end();
++p)
(*p)->sendRangeChange();
inRecvRangeChange.erase(id);
}
AddrRangeList
Bus::getAddrRanges(Port::PortId id)
{
AddrRangeList ranges;
DPRINTF(BusAddrRanges, "received address range request, returning:\n");
for (AddrRangeIter dflt_iter = defaultRange.begin();
dflt_iter != defaultRange.end(); dflt_iter++) {
ranges.push_back(*dflt_iter);
DPRINTF(BusAddrRanges, " -- Dflt: %#llx : %#llx\n",dflt_iter->start,
dflt_iter->end);
}
for (PortIter portIter = portMap.begin();
portIter != portMap.end(); portIter++) {
bool subset = false;
for (AddrRangeIter dflt_iter = defaultRange.begin();
dflt_iter != defaultRange.end(); dflt_iter++) {
if ((portIter->first.start < dflt_iter->start &&
portIter->first.end >= dflt_iter->start) ||
(portIter->first.start < dflt_iter->end &&
portIter->first.end >= dflt_iter->end))
fatal("Devices can not set ranges that itersect the default set\
but are not a subset of the default set.\n");
if (portIter->first.start >= dflt_iter->start &&
portIter->first.end <= dflt_iter->end) {
subset = true;
DPRINTF(BusAddrRanges, " -- %#llx : %#llx is a SUBSET\n",
portIter->first.start, portIter->first.end);
}
}
if (portIter->second != id && !subset) {
ranges.push_back(portIter->first);
DPRINTF(BusAddrRanges, " -- %#llx : %#llx\n",
portIter->first.start, portIter->first.end);
}
}
return ranges;
}
bool
Bus::isSnooping(Port::PortId id) const
{
// in essence, answer the question if there are snooping ports
return !snoopPorts.empty();
}
unsigned
Bus::findBlockSize(Port::PortId id)
{
if (cachedBlockSizeValid)
return cachedBlockSize;
unsigned max_bs = 0;
PortIter p_end = portMap.end();
for (PortIter p_iter = portMap.begin(); p_iter != p_end; p_iter++) {
unsigned tmp_bs = masterPorts[p_iter->second]->peerBlockSize();
if (tmp_bs > max_bs)
max_bs = tmp_bs;
}
for (SlavePortConstIter s = snoopPorts.begin(); s != snoopPorts.end();
++s) {
unsigned tmp_bs = (*s)->peerBlockSize();
if (tmp_bs > max_bs)
max_bs = tmp_bs;
}
if (max_bs == 0)
max_bs = defaultBlockSize;
if (max_bs != 64)
warn_once("Blocksize found to not be 64... hmm... probably not.\n");
cachedBlockSize = max_bs;
cachedBlockSizeValid = true;
return max_bs;
}
unsigned int
Bus::drain(Event * de)
{
//We should check that we're not "doing" anything, and that noone is
//waiting. We might be idle but have someone waiting if the device we
//contacted for a retry didn't actually retry.
if (!retryList.empty() || (curTick() < tickNextIdle &&
busIdleEvent.scheduled())) {
drainEvent = de;
return 1;
}
return 0;
}
void
Bus::startup()
{
if (tickNextIdle < curTick())
tickNextIdle = (curTick() / clock) * clock + clock;
}
Bus *
BusParams::create()
{
return new Bus(this);
}