gem5/src/arch/arm/insts/vfp.hh

1226 lines
35 KiB
C++

/*
* Copyright (c) 2010 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#ifndef __ARCH_ARM_INSTS_VFP_HH__
#define __ARCH_ARM_INSTS_VFP_HH__
#include "arch/arm/insts/misc.hh"
#include "arch/arm/miscregs.hh"
#include <fenv.h>
#include <cmath>
namespace ArmISA
{
enum VfpMicroMode {
VfpNotAMicroop,
VfpMicroop,
VfpFirstMicroop,
VfpLastMicroop
};
template<class T>
static inline void
setVfpMicroFlags(VfpMicroMode mode, T &flags)
{
switch (mode) {
case VfpMicroop:
flags[StaticInst::IsMicroop] = true;
break;
case VfpFirstMicroop:
flags[StaticInst::IsMicroop] =
flags[StaticInst::IsFirstMicroop] = true;
break;
case VfpLastMicroop:
flags[StaticInst::IsMicroop] =
flags[StaticInst::IsLastMicroop] = true;
break;
case VfpNotAMicroop:
break;
}
if (mode == VfpMicroop || mode == VfpFirstMicroop) {
flags[StaticInst::IsDelayedCommit] = true;
}
}
enum FeExceptionBit
{
FeDivByZero = FE_DIVBYZERO,
FeInexact = FE_INEXACT,
FeInvalid = FE_INVALID,
FeOverflow = FE_OVERFLOW,
FeUnderflow = FE_UNDERFLOW,
FeAllExceptions = FE_ALL_EXCEPT
};
enum FeRoundingMode
{
FeRoundDown = FE_DOWNWARD,
FeRoundNearest = FE_TONEAREST,
FeRoundZero = FE_TOWARDZERO,
FeRoundUpward = FE_UPWARD
};
enum VfpRoundingMode
{
VfpRoundNearest = 0,
VfpRoundUpward = 1,
VfpRoundDown = 2,
VfpRoundZero = 3
};
template <class fpType>
static inline bool
flushToZero(fpType &op)
{
fpType junk = 0.0;
if (std::fpclassify(op) == FP_SUBNORMAL) {
uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
op = bitsToFp(fpToBits(op) & bitMask, junk);
return true;
}
return false;
}
template <class fpType>
static inline bool
flushToZero(fpType &op1, fpType &op2)
{
bool flush1 = flushToZero(op1);
bool flush2 = flushToZero(op2);
return flush1 || flush2;
}
template <class fpType>
static inline void
vfpFlushToZero(FPSCR &fpscr, fpType &op)
{
if (fpscr.fz == 1 && flushToZero(op)) {
fpscr.idc = 1;
}
}
template <class fpType>
static inline void
vfpFlushToZero(FPSCR &fpscr, fpType &op1, fpType &op2)
{
vfpFlushToZero(fpscr, op1);
vfpFlushToZero(fpscr, op2);
}
static inline uint32_t
fpToBits(float fp)
{
union
{
float fp;
uint32_t bits;
} val;
val.fp = fp;
return val.bits;
}
static inline uint64_t
fpToBits(double fp)
{
union
{
double fp;
uint64_t bits;
} val;
val.fp = fp;
return val.bits;
}
static inline float
bitsToFp(uint64_t bits, float junk)
{
union
{
float fp;
uint32_t bits;
} val;
val.bits = bits;
return val.fp;
}
static inline double
bitsToFp(uint64_t bits, double junk)
{
union
{
double fp;
uint64_t bits;
} val;
val.bits = bits;
return val.fp;
}
typedef int VfpSavedState;
static inline VfpSavedState
prepFpState(uint32_t rMode)
{
int roundingMode = fegetround();
feclearexcept(FeAllExceptions);
switch (rMode) {
case VfpRoundNearest:
fesetround(FeRoundNearest);
break;
case VfpRoundUpward:
fesetround(FeRoundUpward);
break;
case VfpRoundDown:
fesetround(FeRoundDown);
break;
case VfpRoundZero:
fesetround(FeRoundZero);
break;
}
return roundingMode;
}
static inline void
finishVfp(FPSCR &fpscr, VfpSavedState state)
{
int exceptions = fetestexcept(FeAllExceptions);
bool underflow = false;
if (exceptions & FeInvalid) {
fpscr.ioc = 1;
}
if (exceptions & FeDivByZero) {
fpscr.dzc = 1;
}
if (exceptions & FeOverflow) {
fpscr.ofc = 1;
}
if (exceptions & FeUnderflow) {
underflow = true;
fpscr.ufc = 1;
}
if ((exceptions & FeInexact) && !(underflow && fpscr.fz)) {
fpscr.ixc = 1;
}
fesetround(state);
}
template <class fpType>
static inline fpType
fixDest(FPSCR fpscr, fpType val, fpType op1)
{
int fpClass = std::fpclassify(val);
fpType junk = 0.0;
if (fpClass == FP_NAN) {
const bool single = (sizeof(val) == sizeof(float));
const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
const bool nan = std::isnan(op1);
if (!nan || (fpscr.dn == 1)) {
val = bitsToFp(qnan, junk);
} else if (nan) {
val = bitsToFp(fpToBits(op1) | qnan, junk);
}
} else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
// Turn val into a zero with the correct sign;
uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
val = bitsToFp(fpToBits(val) & bitMask, junk);
feclearexcept(FeInexact);
feraiseexcept(FeUnderflow);
}
return val;
}
template <class fpType>
static inline fpType
fixDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
{
int fpClass = std::fpclassify(val);
fpType junk = 0.0;
if (fpClass == FP_NAN) {
const bool single = (sizeof(val) == sizeof(float));
const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
const bool nan1 = std::isnan(op1);
const bool nan2 = std::isnan(op2);
const bool signal1 = nan1 && ((fpToBits(op1) & qnan) != qnan);
const bool signal2 = nan2 && ((fpToBits(op2) & qnan) != qnan);
if ((!nan1 && !nan2) || (fpscr.dn == 1)) {
val = bitsToFp(qnan, junk);
} else if (signal1) {
val = bitsToFp(fpToBits(op1) | qnan, junk);
} else if (signal2) {
val = bitsToFp(fpToBits(op2) | qnan, junk);
} else if (nan1) {
val = op1;
} else if (nan2) {
val = op2;
}
} else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
// Turn val into a zero with the correct sign;
uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
val = bitsToFp(fpToBits(val) & bitMask, junk);
feclearexcept(FeInexact);
feraiseexcept(FeUnderflow);
}
return val;
}
template <class fpType>
static inline fpType
fixDivDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
{
fpType mid = fixDest(fpscr, val, op1, op2);
const bool single = (sizeof(fpType) == sizeof(float));
const fpType junk = 0.0;
if ((single && (val == bitsToFp(0x00800000, junk) ||
val == bitsToFp(0x80800000, junk))) ||
(!single && (val == bitsToFp(ULL(0x0010000000000000), junk) ||
val == bitsToFp(ULL(0x8010000000000000), junk)))
) {
__asm__ __volatile__("" : "=m" (op1) : "m" (op1));
fesetround(FeRoundZero);
fpType temp = 0.0;
__asm__ __volatile__("" : "=m" (temp) : "m" (temp));
temp = op1 / op2;
if (flushToZero(temp)) {
feraiseexcept(FeUnderflow);
if (fpscr.fz) {
feclearexcept(FeInexact);
mid = temp;
}
}
__asm__ __volatile__("" :: "m" (temp));
}
return mid;
}
static inline float
fixFpDFpSDest(FPSCR fpscr, double val)
{
const float junk = 0.0;
float op1 = 0.0;
if (std::isnan(val)) {
uint64_t valBits = fpToBits(val);
uint32_t op1Bits = bits(valBits, 50, 29) |
(mask(9) << 22) |
(bits(valBits, 63) << 31);
op1 = bitsToFp(op1Bits, junk);
}
float mid = fixDest(fpscr, (float)val, op1);
if (fpscr.fz && fetestexcept(FeUnderflow | FeInexact) ==
(FeUnderflow | FeInexact)) {
feclearexcept(FeInexact);
}
if (mid == bitsToFp(0x00800000, junk) ||
mid == bitsToFp(0x80800000, junk)) {
__asm__ __volatile__("" : "=m" (val) : "m" (val));
fesetround(FeRoundZero);
float temp = 0.0;
__asm__ __volatile__("" : "=m" (temp) : "m" (temp));
temp = val;
if (flushToZero(temp)) {
feraiseexcept(FeUnderflow);
if (fpscr.fz) {
feclearexcept(FeInexact);
mid = temp;
}
}
__asm__ __volatile__("" :: "m" (temp));
}
return mid;
}
static inline double
fixFpSFpDDest(FPSCR fpscr, float val)
{
const double junk = 0.0;
double op1 = 0.0;
if (std::isnan(val)) {
uint32_t valBits = fpToBits(val);
uint64_t op1Bits = ((uint64_t)bits(valBits, 21, 0) << 29) |
(mask(12) << 51) |
((uint64_t)bits(valBits, 31) << 63);
op1 = bitsToFp(op1Bits, junk);
}
double mid = fixDest(fpscr, (double)val, op1);
if (mid == bitsToFp(ULL(0x0010000000000000), junk) ||
mid == bitsToFp(ULL(0x8010000000000000), junk)) {
__asm__ __volatile__("" : "=m" (val) : "m" (val));
fesetround(FeRoundZero);
double temp = 0.0;
__asm__ __volatile__("" : "=m" (temp) : "m" (temp));
temp = val;
if (flushToZero(temp)) {
feraiseexcept(FeUnderflow);
if (fpscr.fz) {
feclearexcept(FeInexact);
mid = temp;
}
}
__asm__ __volatile__("" :: "m" (temp));
}
return mid;
}
static inline float
vcvtFpSFpH(FPSCR &fpscr, float op, float dest, bool top)
{
float junk = 0.0;
uint32_t destBits = fpToBits(dest);
uint32_t opBits = fpToBits(op);
// Extract the operand.
bool neg = bits(opBits, 31);
uint32_t exponent = bits(opBits, 30, 23);
uint32_t oldMantissa = bits(opBits, 22, 0);
uint32_t mantissa = oldMantissa >> (23 - 10);
// Do the conversion.
uint32_t extra = oldMantissa & mask(23 - 10);
if (exponent == 0xff) {
if (oldMantissa != 0) {
// Nans.
if (bits(mantissa, 9) == 0) {
// Signalling nan.
fpscr.ioc = 1;
}
if (fpscr.ahp) {
mantissa = 0;
exponent = 0;
fpscr.ioc = 1;
} else if (fpscr.dn) {
mantissa = (1 << 9);
exponent = 0x1f;
neg = false;
} else {
exponent = 0x1f;
mantissa |= (1 << 9);
}
} else {
// Infinities.
exponent = 0x1F;
if (fpscr.ahp) {
fpscr.ioc = 1;
mantissa = 0x3ff;
} else {
mantissa = 0;
}
}
} else if (exponent == 0 && oldMantissa == 0) {
// Zero, don't need to do anything.
} else {
// Normalized or denormalized numbers.
bool inexact = (extra != 0);
if (exponent == 0) {
// Denormalized.
// If flush to zero is on, this shouldn't happen.
assert(fpscr.fz == 0);
// Check for underflow
if (inexact || fpscr.ufe)
fpscr.ufc = 1;
// Handle rounding.
unsigned mode = fpscr.rMode;
if ((mode == VfpRoundUpward && !neg && extra) ||
(mode == VfpRoundDown && neg && extra) ||
(mode == VfpRoundNearest &&
(extra > (1 << 9) ||
(extra == (1 << 9) && bits(mantissa, 0))))) {
mantissa++;
}
// See if the number became normalized after rounding.
if (mantissa == (1 << 10)) {
mantissa = 0;
exponent = 1;
}
} else {
// Normalized.
// We need to track the dropped bits differently since
// more can be dropped by denormalizing.
bool topOne = bits(extra, 12);
bool restZeros = bits(extra, 11, 0) == 0;
if (exponent <= (127 - 15)) {
// The result is too small. Denormalize.
mantissa |= (1 << 10);
while (mantissa && exponent <= (127 - 15)) {
restZeros = restZeros && !topOne;
topOne = bits(mantissa, 0);
mantissa = mantissa >> 1;
exponent++;
}
if (topOne || !restZeros)
inexact = true;
exponent = 0;
} else {
// Change bias.
exponent -= (127 - 15);
}
if (exponent == 0 && (inexact || fpscr.ufe)) {
// Underflow
fpscr.ufc = 1;
}
// Handle rounding.
unsigned mode = fpscr.rMode;
bool nonZero = topOne || !restZeros;
if ((mode == VfpRoundUpward && !neg && nonZero) ||
(mode == VfpRoundDown && neg && nonZero) ||
(mode == VfpRoundNearest && topOne &&
(!restZeros || bits(mantissa, 0)))) {
mantissa++;
}
// See if we rounded up and need to bump the exponent.
if (mantissa == (1 << 10)) {
mantissa = 0;
exponent++;
}
// Deal with overflow
if (fpscr.ahp) {
if (exponent >= 0x20) {
exponent = 0x1f;
mantissa = 0x3ff;
fpscr.ioc = 1;
// Supress inexact exception.
inexact = false;
}
} else {
if (exponent >= 0x1f) {
if ((mode == VfpRoundNearest) ||
(mode == VfpRoundUpward && !neg) ||
(mode == VfpRoundDown && neg)) {
// Overflow to infinity.
exponent = 0x1f;
mantissa = 0;
} else {
// Overflow to max normal.
exponent = 0x1e;
mantissa = 0x3ff;
}
fpscr.ofc = 1;
inexact = true;
}
}
}
if (inexact) {
fpscr.ixc = 1;
}
}
// Reassemble and install the result.
uint32_t result = bits(mantissa, 9, 0);
replaceBits(result, 14, 10, exponent);
if (neg)
result |= (1 << 15);
if (top)
replaceBits(destBits, 31, 16, result);
else
replaceBits(destBits, 15, 0, result);
return bitsToFp(destBits, junk);
}
static inline float
vcvtFpHFpS(FPSCR &fpscr, float op, bool top)
{
float junk = 0.0;
uint32_t opBits = fpToBits(op);
// Extract the operand.
if (top)
opBits = bits(opBits, 31, 16);
else
opBits = bits(opBits, 15, 0);
// Extract the bitfields.
bool neg = bits(opBits, 15);
uint32_t exponent = bits(opBits, 14, 10);
uint32_t mantissa = bits(opBits, 9, 0);
// Do the conversion.
if (exponent == 0) {
if (mantissa != 0) {
// Normalize the value.
exponent = exponent + (127 - 15) + 1;
while (mantissa < (1 << 10)) {
mantissa = mantissa << 1;
exponent--;
}
}
mantissa = mantissa << (23 - 10);
} else if (exponent == 0x1f && !fpscr.ahp) {
// Infinities and nans.
exponent = 0xff;
if (mantissa != 0) {
// Nans.
mantissa = mantissa << (23 - 10);
if (bits(mantissa, 22) == 0) {
// Signalling nan.
fpscr.ioc = 1;
mantissa |= (1 << 22);
}
if (fpscr.dn) {
mantissa &= ~mask(22);
neg = false;
}
}
} else {
exponent = exponent + (127 - 15);
mantissa = mantissa << (23 - 10);
}
// Reassemble the result.
uint32_t result = bits(mantissa, 22, 0);
replaceBits(result, 30, 23, exponent);
if (neg)
result |= (1 << 31);
return bitsToFp(result, junk);
}
static inline double
makeDouble(uint32_t low, uint32_t high)
{
double junk = 0.0;
return bitsToFp((uint64_t)low | ((uint64_t)high << 32), junk);
}
static inline uint32_t
lowFromDouble(double val)
{
return fpToBits(val);
}
static inline uint32_t
highFromDouble(double val)
{
return fpToBits(val) >> 32;
}
static inline uint64_t
vfpFpSToFixed(float val, bool isSigned, bool half,
uint8_t imm, bool rzero = true)
{
int rmode = rzero ? FeRoundZero : fegetround();
__asm__ __volatile__("" : "=m" (rmode) : "m" (rmode));
fesetround(FeRoundNearest);
val = val * powf(2.0, imm);
__asm__ __volatile__("" : "=m" (val) : "m" (val));
fesetround(rmode);
feclearexcept(FeAllExceptions);
__asm__ __volatile__("" : "=m" (val) : "m" (val));
float origVal = val;
val = rintf(val);
int fpType = std::fpclassify(val);
if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
if (fpType == FP_NAN) {
feraiseexcept(FeInvalid);
}
val = 0.0;
} else if (origVal != val) {
switch (rmode) {
case FeRoundNearest:
if (origVal - val > 0.5)
val += 1.0;
else if (val - origVal > 0.5)
val -= 1.0;
break;
case FeRoundDown:
if (origVal < val)
val -= 1.0;
break;
case FeRoundUpward:
if (origVal > val)
val += 1.0;
break;
}
feraiseexcept(FeInexact);
}
if (isSigned) {
if (half) {
if ((double)val < (int16_t)(1 << 15)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int16_t)(1 << 15);
}
if ((double)val > (int16_t)mask(15)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int16_t)mask(15);
}
return (int16_t)val;
} else {
if ((double)val < (int32_t)(1 << 31)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int32_t)(1 << 31);
}
if ((double)val > (int32_t)mask(31)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int32_t)mask(31);
}
return (int32_t)val;
}
} else {
if (half) {
if ((double)val < 0) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return 0;
}
if ((double)val > (mask(16))) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return mask(16);
}
return (uint16_t)val;
} else {
if ((double)val < 0) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return 0;
}
if ((double)val > (mask(32))) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return mask(32);
}
return (uint32_t)val;
}
}
}
static inline float
vfpUFixedToFpS(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = (uint16_t)val;
float scale = powf(2.0, imm);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
feclearexcept(FeAllExceptions);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
return fixDivDest(fpscr, val / scale, (float)val, scale);
}
static inline float
vfpSFixedToFpS(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = sext<16>(val & mask(16));
float scale = powf(2.0, imm);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
feclearexcept(FeAllExceptions);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
return fixDivDest(fpscr, val / scale, (float)val, scale);
}
static inline uint64_t
vfpFpDToFixed(double val, bool isSigned, bool half,
uint8_t imm, bool rzero = true)
{
int rmode = rzero ? FeRoundZero : fegetround();
fesetround(FeRoundNearest);
val = val * pow(2.0, imm);
__asm__ __volatile__("" : "=m" (val) : "m" (val));
fesetround(rmode);
feclearexcept(FeAllExceptions);
__asm__ __volatile__("" : "=m" (val) : "m" (val));
double origVal = val;
val = rint(val);
int fpType = std::fpclassify(val);
if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
if (fpType == FP_NAN) {
feraiseexcept(FeInvalid);
}
val = 0.0;
} else if (origVal != val) {
switch (rmode) {
case FeRoundNearest:
if (origVal - val > 0.5)
val += 1.0;
else if (val - origVal > 0.5)
val -= 1.0;
break;
case FeRoundDown:
if (origVal < val)
val -= 1.0;
break;
case FeRoundUpward:
if (origVal > val)
val += 1.0;
break;
}
feraiseexcept(FeInexact);
}
if (isSigned) {
if (half) {
if (val < (int16_t)(1 << 15)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int16_t)(1 << 15);
}
if (val > (int16_t)mask(15)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int16_t)mask(15);
}
return (int16_t)val;
} else {
if (val < (int32_t)(1 << 31)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int32_t)(1 << 31);
}
if (val > (int32_t)mask(31)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return (int32_t)mask(31);
}
return (int32_t)val;
}
} else {
if (half) {
if (val < 0) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return 0;
}
if (val > mask(16)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return mask(16);
}
return (uint16_t)val;
} else {
if (val < 0) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return 0;
}
if (val > mask(32)) {
feraiseexcept(FeInvalid);
feclearexcept(FeInexact);
return mask(32);
}
return (uint32_t)val;
}
}
}
static inline double
vfpUFixedToFpD(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = (uint16_t)val;
double scale = pow(2.0, imm);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
feclearexcept(FeAllExceptions);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
return fixDivDest(fpscr, val / scale, (double)val, scale);
}
static inline double
vfpSFixedToFpD(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
{
fesetround(FeRoundNearest);
if (half)
val = sext<16>(val & mask(16));
double scale = pow(2.0, imm);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
feclearexcept(FeAllExceptions);
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
return fixDivDest(fpscr, val / scale, (double)val, scale);
}
class VfpMacroOp : public PredMacroOp
{
public:
static bool
inScalarBank(IntRegIndex idx)
{
return (idx % 32) < 8;
}
protected:
bool wide;
VfpMacroOp(const char *mnem, ExtMachInst _machInst,
OpClass __opClass, bool _wide) :
PredMacroOp(mnem, _machInst, __opClass), wide(_wide)
{}
IntRegIndex
addStride(IntRegIndex idx, unsigned stride)
{
if (wide) {
stride *= 2;
}
unsigned offset = idx % 8;
idx = (IntRegIndex)(idx - offset);
offset += stride;
idx = (IntRegIndex)(idx + (offset % 8));
return idx;
}
void
nextIdxs(IntRegIndex &dest, IntRegIndex &op1, IntRegIndex &op2)
{
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
assert(!inScalarBank(dest));
dest = addStride(dest, stride);
op1 = addStride(op1, stride);
if (!inScalarBank(op2)) {
op2 = addStride(op2, stride);
}
}
void
nextIdxs(IntRegIndex &dest, IntRegIndex &op1)
{
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
assert(!inScalarBank(dest));
dest = addStride(dest, stride);
if (!inScalarBank(op1)) {
op1 = addStride(op1, stride);
}
}
void
nextIdxs(IntRegIndex &dest)
{
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
assert(!inScalarBank(dest));
dest = addStride(dest, stride);
}
};
static inline float
fpAddS(float a, float b)
{
return a + b;
}
static inline double
fpAddD(double a, double b)
{
return a + b;
}
static inline float
fpSubS(float a, float b)
{
return a - b;
}
static inline double
fpSubD(double a, double b)
{
return a - b;
}
static inline float
fpDivS(float a, float b)
{
return a / b;
}
static inline double
fpDivD(double a, double b)
{
return a / b;
}
static inline float
fpMulS(float a, float b)
{
return a * b;
}
static inline double
fpMulD(double a, double b)
{
return a * b;
}
class FpOp : public PredOp
{
protected:
FpOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
PredOp(mnem, _machInst, __opClass)
{}
virtual float
doOp(float op1, float op2) const
{
panic("Unimplemented version of doOp called.\n");
}
virtual float
doOp(float op1) const
{
panic("Unimplemented version of doOp called.\n");
}
virtual double
doOp(double op1, double op2) const
{
panic("Unimplemented version of doOp called.\n");
}
virtual double
doOp(double op1) const
{
panic("Unimplemented version of doOp called.\n");
}
double
dbl(uint32_t low, uint32_t high) const
{
double junk = 0.0;
return bitsToFp((uint64_t)low | ((uint64_t)high << 32), junk);
}
uint32_t
dblLow(double val) const
{
return fpToBits(val);
}
uint32_t
dblHi(double val) const
{
return fpToBits(val) >> 32;
}
template <class fpType>
fpType
binaryOp(FPSCR &fpscr, fpType op1, fpType op2,
fpType (*func)(fpType, fpType),
bool flush, uint32_t rMode) const
{
const bool single = (sizeof(fpType) == sizeof(float));
fpType junk = 0.0;
if (flush && flushToZero(op1, op2))
fpscr.idc = 1;
VfpSavedState state = prepFpState(rMode);
__asm__ __volatile__ ("" : "=m" (op1), "=m" (op2), "=m" (state)
: "m" (op1), "m" (op2), "m" (state));
fpType dest = func(op1, op2);
__asm__ __volatile__ ("" : "=m" (dest) : "m" (dest));
int fpClass = std::fpclassify(dest);
// Get NAN behavior right. This varies between x86 and ARM.
if (fpClass == FP_NAN) {
const bool single = (sizeof(fpType) == sizeof(float));
const uint64_t qnan =
single ? 0x7fc00000 : ULL(0x7ff8000000000000);
const bool nan1 = std::isnan(op1);
const bool nan2 = std::isnan(op2);
const bool signal1 = nan1 && ((fpToBits(op1) & qnan) != qnan);
const bool signal2 = nan2 && ((fpToBits(op2) & qnan) != qnan);
if ((!nan1 && !nan2) || (fpscr.dn == 1)) {
dest = bitsToFp(qnan, junk);
} else if (signal1) {
dest = bitsToFp(fpToBits(op1) | qnan, junk);
} else if (signal2) {
dest = bitsToFp(fpToBits(op2) | qnan, junk);
} else if (nan1) {
dest = op1;
} else if (nan2) {
dest = op2;
}
} else if (flush && flushToZero(dest)) {
feraiseexcept(FeUnderflow);
} else if ((
(single && (dest == bitsToFp(0x00800000, junk) ||
dest == bitsToFp(0x80800000, junk))) ||
(!single &&
(dest == bitsToFp(ULL(0x0010000000000000), junk) ||
dest == bitsToFp(ULL(0x8010000000000000), junk)))
) && rMode != VfpRoundZero) {
/*
* Correct for the fact that underflow is detected -before- rounding
* in ARM and -after- rounding in x86.
*/
fesetround(FeRoundZero);
__asm__ __volatile__ ("" : "=m" (op1), "=m" (op2)
: "m" (op1), "m" (op2));
fpType temp = func(op1, op2);
__asm__ __volatile__ ("" : "=m" (temp) : "m" (temp));
if (flush && flushToZero(temp)) {
dest = temp;
}
}
finishVfp(fpscr, state);
return dest;
}
template <class fpType>
fpType
unaryOp(FPSCR &fpscr, fpType op1,
fpType (*func)(fpType),
bool flush, uint32_t rMode) const
{
const bool single = (sizeof(fpType) == sizeof(float));
fpType junk = 0.0;
if (flush && flushToZero(op1))
fpscr.idc = 1;
VfpSavedState state = prepFpState(rMode);
__asm__ __volatile__ ("" : "=m" (op1), "=m" (state)
: "m" (op1), "m" (state));
fpType dest = func(op1);
__asm__ __volatile__ ("" : "=m" (dest) : "m" (dest));
int fpClass = std::fpclassify(dest);
// Get NAN behavior right. This varies between x86 and ARM.
if (fpClass == FP_NAN) {
const bool single = (sizeof(fpType) == sizeof(float));
const uint64_t qnan =
single ? 0x7fc00000 : ULL(0x7ff8000000000000);
const bool nan = std::isnan(op1);
if (!nan || fpscr.dn == 1) {
dest = bitsToFp(qnan, junk);
} else if (nan) {
dest = bitsToFp(fpToBits(op1) | qnan, junk);
}
} else if (flush && flushToZero(dest)) {
feraiseexcept(FeUnderflow);
} else if ((
(single && (dest == bitsToFp(0x00800000, junk) ||
dest == bitsToFp(0x80800000, junk))) ||
(!single &&
(dest == bitsToFp(ULL(0x0010000000000000), junk) ||
dest == bitsToFp(ULL(0x8010000000000000), junk)))
) && rMode != VfpRoundZero) {
/*
* Correct for the fact that underflow is detected -before- rounding
* in ARM and -after- rounding in x86.
*/
fesetround(FeRoundZero);
__asm__ __volatile__ ("" : "=m" (op1) : "m" (op1));
fpType temp = func(op1);
__asm__ __volatile__ ("" : "=m" (temp) : "m" (temp));
if (flush && flushToZero(temp)) {
dest = temp;
}
}
finishVfp(fpscr, state);
return dest;
}
};
class FpRegRegOp : public FpOp
{
protected:
IntRegIndex dest;
IntRegIndex op1;
FpRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, IntRegIndex _op1,
VfpMicroMode mode = VfpNotAMicroop) :
FpOp(mnem, _machInst, __opClass), dest(_dest), op1(_op1)
{
setVfpMicroFlags(mode, flags);
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
class FpRegImmOp : public FpOp
{
protected:
IntRegIndex dest;
uint64_t imm;
FpRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, uint64_t _imm,
VfpMicroMode mode = VfpNotAMicroop) :
FpOp(mnem, _machInst, __opClass), dest(_dest), imm(_imm)
{
setVfpMicroFlags(mode, flags);
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
class FpRegRegImmOp : public FpOp
{
protected:
IntRegIndex dest;
IntRegIndex op1;
uint64_t imm;
FpRegRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, IntRegIndex _op1,
uint64_t _imm, VfpMicroMode mode = VfpNotAMicroop) :
FpOp(mnem, _machInst, __opClass), dest(_dest), op1(_op1), imm(_imm)
{
setVfpMicroFlags(mode, flags);
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
class FpRegRegRegOp : public FpOp
{
protected:
IntRegIndex dest;
IntRegIndex op1;
IntRegIndex op2;
FpRegRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
IntRegIndex _dest, IntRegIndex _op1, IntRegIndex _op2,
VfpMicroMode mode = VfpNotAMicroop) :
FpOp(mnem, _machInst, __opClass), dest(_dest), op1(_op1), op2(_op2)
{
setVfpMicroFlags(mode, flags);
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}
#endif //__ARCH_ARM_INSTS_VFP_HH__