24da30e317
This basically means changing all #include statements and changing autogenerated code so that it generates the correct paths. Because slicc generates #includes, I had to hard code the include paths to mem/protocol.
185 lines
4.8 KiB
C++
185 lines
4.8 KiB
C++
|
|
/*
|
|
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* $Id$
|
|
*
|
|
*/
|
|
|
|
#include "mem/ruby/common/Histogram.hh"
|
|
|
|
Histogram::Histogram(int binsize, int bins)
|
|
{
|
|
m_binsize = binsize;
|
|
m_bins = bins;
|
|
clear();
|
|
}
|
|
|
|
Histogram::~Histogram()
|
|
{
|
|
}
|
|
|
|
void Histogram::clear(int binsize, int bins)
|
|
{
|
|
m_binsize = binsize;
|
|
clear(bins);
|
|
}
|
|
|
|
void Histogram::clear(int bins)
|
|
{
|
|
m_bins = bins;
|
|
m_largest_bin = 0;
|
|
m_max = 0;
|
|
m_data.setSize(m_bins);
|
|
for (int i = 0; i < m_bins; i++) {
|
|
m_data[i] = 0;
|
|
}
|
|
m_count = 0;
|
|
m_max = 0;
|
|
|
|
m_sumSamples = 0;
|
|
m_sumSquaredSamples = 0;
|
|
}
|
|
|
|
|
|
void Histogram::add(int64 value)
|
|
{
|
|
assert(value >= 0);
|
|
m_max = max(m_max, value);
|
|
m_count++;
|
|
|
|
m_sumSamples += value;
|
|
m_sumSquaredSamples += (value*value);
|
|
|
|
int index;
|
|
if (m_binsize == -1) {
|
|
// This is a log base 2 histogram
|
|
if (value == 0) {
|
|
index = 0;
|
|
} else {
|
|
index = int(log(double(value))/log(2.0))+1;
|
|
if (index >= m_data.size()) {
|
|
index = m_data.size()-1;
|
|
}
|
|
}
|
|
} else {
|
|
// This is a linear histogram
|
|
while (m_max >= (m_bins * m_binsize)) {
|
|
for (int i = 0; i < m_bins/2; i++) {
|
|
m_data[i] = m_data[i*2] + m_data[i*2 + 1];
|
|
}
|
|
for (int i = m_bins/2; i < m_bins; i++) {
|
|
m_data[i] = 0;
|
|
}
|
|
m_binsize *= 2;
|
|
}
|
|
index = value/m_binsize;
|
|
}
|
|
assert(index >= 0);
|
|
m_data[index]++;
|
|
m_largest_bin = max(m_largest_bin, index);
|
|
}
|
|
|
|
void Histogram::add(const Histogram& hist)
|
|
{
|
|
assert(hist.getBins() == m_bins);
|
|
assert(hist.getBinSize() == -1); // assume log histogram
|
|
assert(m_binsize == -1);
|
|
|
|
for (int j = 0; j < hist.getData(0); j++) {
|
|
add(0);
|
|
}
|
|
|
|
for (int i = 1; i < m_bins; i++) {
|
|
for (int j = 0; j < hist.getData(i); j++) {
|
|
add(1<<(i-1)); // account for the + 1 index
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Computation of standard deviation of samples a1, a2, ... aN
|
|
// variance = [SUM {ai^2} - (SUM {ai})^2/N]/(N-1)
|
|
// std deviation equals square root of variance
|
|
double Histogram::getStandardDeviation() const
|
|
{
|
|
double variance;
|
|
if(m_count > 1){
|
|
variance = (double)(m_sumSquaredSamples - m_sumSamples*m_sumSamples/m_count)/(m_count - 1);
|
|
} else {
|
|
return 0;
|
|
}
|
|
return sqrt(variance);
|
|
}
|
|
|
|
void Histogram::print(ostream& out) const
|
|
{
|
|
printWithMultiplier(out, 1.0);
|
|
}
|
|
|
|
void Histogram::printPercent(ostream& out) const
|
|
{
|
|
if (m_count == 0) {
|
|
printWithMultiplier(out, 0.0);
|
|
} else {
|
|
printWithMultiplier(out, 100.0/double(m_count));
|
|
}
|
|
}
|
|
|
|
void Histogram::printWithMultiplier(ostream& out, double multiplier) const
|
|
{
|
|
if (m_binsize == -1) {
|
|
out << "[binsize: log2 ";
|
|
} else {
|
|
out << "[binsize: " << m_binsize << " ";
|
|
}
|
|
out << "max: " << m_max << " ";
|
|
out << "count: " << m_count << " ";
|
|
// out << "total: " << m_sumSamples << " ";
|
|
if (m_count == 0) {
|
|
out << "average: NaN |";
|
|
out << "standard deviation: NaN |";
|
|
} else {
|
|
out << "average: " << setw(5) << ((double) m_sumSamples)/m_count << " | ";
|
|
out << "standard deviation: " << getStandardDeviation() << " |";
|
|
}
|
|
for (int i = 0; i < m_bins && i <= m_largest_bin; i++) {
|
|
if (multiplier == 1.0) {
|
|
out << " " << m_data[i];
|
|
} else {
|
|
out << " " << double(m_data[i]) * multiplier;
|
|
}
|
|
}
|
|
out << " ]";
|
|
}
|
|
|
|
bool node_less_then_eq(const Histogram* n1, const Histogram* n2)
|
|
{
|
|
return (n1->size() > n2->size());
|
|
}
|