gem5/dev/ide_ctrl.cc
Nathan Binkert b881408ed7 Clean up the Range class and associated usages. The code was
never clear about whether the end of the range was inclusive
or exclusive.  Make it inclusive, but also provide a RangeSize()
function that will generate a Range based on a start and a size.
This, in combination with using the comparison operators, makes
almost all usages of the range not care how it is stored.

base/range.cc:
    Make the end of the range inclusive.

    start/end -> first/last
    (end seems too much like end() in stl)
base/range.hh:
    Make the end of the range inclusive.

    Fix all comparison operators so that they work correctly with
    an inclusive range.  Also, when comparing one range to another
    with <, <=, >, >=, we only look at the beginning of the range
    beacuse x <= y should be the same as x < y || x == y.  (This wasn't
    the case before.)

    Add a few functions for making a range:
    RangeSize is start and size
    RangeEx is start and end where end is exclusive
    RangeIn is start and end where end is inclusive

    start/end -> first/last
    (end seems too much like end() in stl)
dev/alpha_console.cc:
dev/baddev.cc:
dev/ide_ctrl.cc:
dev/ns_gige.cc:
dev/pciconfigall.cc:
dev/pcidev.cc:
dev/tsunami_cchip.cc:
dev/tsunami_io.cc:
dev/tsunami_pchip.cc:
dev/uart.cc:
    Use the RangeSize function to create a range.

--HG--
extra : convert_revision : 29a7eb7fce745680f1c77fefff456c2144bc3994
2004-10-22 01:34:40 -04:00

732 lines
22 KiB
C++

/*
* Copyright (c) 2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cstddef>
#include <cstdlib>
#include <string>
#include <vector>
#include "base/trace.hh"
#include "cpu/intr_control.hh"
#include "dev/dma.hh"
#include "dev/pcireg.h"
#include "dev/pciconfigall.hh"
#include "dev/ide_disk.hh"
#include "dev/ide_ctrl.hh"
#include "dev/tsunami_cchip.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "mem/bus/dma_interface.hh"
#include "dev/tsunami.hh"
#include "mem/functional_mem/memory_control.hh"
#include "mem/functional_mem/physical_memory.hh"
#include "sim/builder.hh"
#include "sim/sim_object.hh"
using namespace std;
////
// Initialization and destruction
////
IdeController::IdeController(const string &name, IntrControl *ic,
const vector<IdeDisk *> &new_disks,
MemoryController *mmu, PciConfigAll *cf,
PciConfigData *cd, Tsunami *t, uint32_t bus_num,
uint32_t dev_num, uint32_t func_num,
Bus *host_bus, Tick pio_latency, HierParams *hier)
: PciDev(name, mmu, cf, cd, bus_num, dev_num, func_num), tsunami(t)
{
// put back pointer into Tsunami
tsunami->disk_controller = this;
// initialize the PIO interface addresses
pri_cmd_addr = 0;
pri_cmd_size = BARSize[0];
pri_ctrl_addr = 0;
pri_ctrl_size = BARSize[1];
sec_cmd_addr = 0;
sec_cmd_size = BARSize[2];
sec_ctrl_addr = 0;
sec_ctrl_size = BARSize[3];
// initialize the bus master interface (BMI) address to be configured
// via PCI
bmi_addr = 0;
bmi_size = BARSize[4];
// zero out all of the registers
memset(bmi_regs, 0, sizeof(bmi_regs));
memset(pci_regs, 0, sizeof(pci_regs));
// setup initial values
*(uint32_t *)&pci_regs[IDETIM] = 0x80008000; // enable both channels
*(uint8_t *)&bmi_regs[BMIS0] = 0x60;
*(uint8_t *)&bmi_regs[BMIS1] = 0x60;
// reset all internal variables
io_enabled = false;
bm_enabled = false;
memset(cmd_in_progress, 0, sizeof(cmd_in_progress));
// create the PIO and DMA interfaces
if (host_bus) {
pioInterface = newPioInterface(name, hier, host_bus, this,
&IdeController::cacheAccess);
dmaInterface = new DMAInterface<Bus>(name + ".dma", host_bus,
host_bus, 1);
pioLatency = pio_latency * host_bus->clockRatio;
}
// setup the disks attached to controller
memset(disks, 0, sizeof(IdeDisk *) * 4);
if (new_disks.size() > 3)
panic("IDE controllers support a maximum of 4 devices attached!\n");
for (int i = 0; i < new_disks.size(); i++) {
disks[i] = new_disks[i];
disks[i]->setController(this, dmaInterface);
}
}
IdeController::~IdeController()
{
for (int i = 0; i < 4; i++)
if (disks[i])
delete disks[i];
}
////
// Utility functions
///
void
IdeController::parseAddr(const Addr &addr, Addr &offset, bool &primary,
RegType_t &type)
{
offset = addr;
if (addr >= pri_cmd_addr && addr < (pri_cmd_addr + pri_cmd_size)) {
offset -= pri_cmd_addr;
type = COMMAND_BLOCK;
primary = true;
} else if (addr >= pri_ctrl_addr &&
addr < (pri_ctrl_addr + pri_ctrl_size)) {
offset -= pri_ctrl_addr;
type = CONTROL_BLOCK;
primary = true;
} else if (addr >= sec_cmd_addr &&
addr < (sec_cmd_addr + sec_cmd_size)) {
offset -= sec_cmd_addr;
type = COMMAND_BLOCK;
primary = false;
} else if (addr >= sec_ctrl_addr &&
addr < (sec_ctrl_addr + sec_ctrl_size)) {
offset -= sec_ctrl_addr;
type = CONTROL_BLOCK;
primary = false;
} else if (addr >= bmi_addr && addr < (bmi_addr + bmi_size)) {
offset -= bmi_addr;
type = BMI_BLOCK;
primary = (offset < BMIC1) ? true : false;
} else {
panic("IDE controller access to invalid address: %#x\n", addr);
}
}
int
IdeController::getDisk(bool primary)
{
int disk = 0;
uint8_t *devBit = &dev[0];
if (!primary) {
disk += 2;
devBit = &dev[1];
}
disk += *devBit;
assert(*devBit == 0 || *devBit == 1);
return disk;
}
int
IdeController::getDisk(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i])
return i;
}
return -1;
}
bool
IdeController::isDiskSelected(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i]) {
// is disk is on primary or secondary channel
int channel = i/2;
// is disk the master or slave
int devID = i%2;
return (dev[channel] == devID);
}
}
panic("Unable to find disk by pointer!!\n");
}
////
// Command completion
////
void
IdeController::setDmaComplete(IdeDisk *disk)
{
int diskNum = getDisk(disk);
if (diskNum < 0)
panic("Unable to find disk based on pointer %#x\n", disk);
if (diskNum < 2) {
// clear the start/stop bit in the command register
bmi_regs[BMIC0] &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs[BMIS0] &= ~BMIDEA;
// set the interrupt bit
bmi_regs[BMIS0] |= IDEINTS;
} else {
// clear the start/stop bit in the command register
bmi_regs[BMIC1] &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs[BMIS1] &= ~BMIDEA;
// set the interrupt bit
bmi_regs[BMIS1] |= IDEINTS;
}
}
////
// Interrupt handling
////
void
IdeController::intrPost()
{
tsunami->cchip->postDRIR(configData->config.hdr.pci0.interruptLine);
}
void
IdeController::intrClear()
{
tsunami->cchip->clearDRIR(configData->config.hdr.pci0.interruptLine);
}
////
// Bus timing and bus access functions
////
Tick
IdeController::cacheAccess(MemReqPtr &req)
{
// @todo Add more accurate timing to cache access
return curTick + pioLatency;
}
////
// Read and write handling
////
void
IdeController::ReadConfig(int offset, int size, uint8_t *data)
{
#if TRACING_ON
Addr origOffset = offset;
#endif
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::ReadConfig(offset, size, data);
} else {
if (offset >= PCI_IDE_TIMING && offset < (PCI_IDE_TIMING + 4)) {
offset -= PCI_IDE_TIMING;
offset += IDETIM;
if ((offset + size) > (IDETIM + 4))
panic("PCI read of IDETIM with invalid size\n");
} else if (offset == PCI_SLAVE_TIMING) {
offset -= PCI_SLAVE_TIMING;
offset += SIDETIM;
if ((offset + size) > (SIDETIM + 1))
panic("PCI read of SIDETIM with invalid size\n");
} else if (offset == PCI_UDMA33_CTRL) {
offset -= PCI_UDMA33_CTRL;
offset += UDMACTL;
if ((offset + size) > (UDMACTL + 1))
panic("PCI read of UDMACTL with invalid size\n");
} else if (offset >= PCI_UDMA33_TIMING &&
offset < (PCI_UDMA33_TIMING + 2)) {
offset -= PCI_UDMA33_TIMING;
offset += UDMATIM;
if ((offset + size) > (UDMATIM + 2))
panic("PCI read of UDMATIM with invalid size\n");
} else {
panic("PCI read of unimplemented register: %x\n", offset);
}
memcpy((void *)data, (void *)&pci_regs[offset], size);
}
DPRINTF(IdeCtrl, "IDE PCI read offset: %#x (%#x) size: %#x data: %#x\n",
origOffset, offset, size, *(uint32_t *)data);
}
void
IdeController::WriteConfig(int offset, int size, uint32_t data)
{
DPRINTF(IdeCtrl, "IDE PCI write offset: %#x size: %#x data: %#x\n",
offset, size, data);
// do standard write stuff if in standard PCI space
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::WriteConfig(offset, size, data);
} else {
if (offset >= PCI_IDE_TIMING && offset < (PCI_IDE_TIMING + 4)) {
offset -= PCI_IDE_TIMING;
offset += IDETIM;
if ((offset + size) > (IDETIM + 4))
panic("PCI write to IDETIM with invalid size\n");
} else if (offset == PCI_SLAVE_TIMING) {
offset -= PCI_SLAVE_TIMING;
offset += SIDETIM;
if ((offset + size) > (SIDETIM + 1))
panic("PCI write to SIDETIM with invalid size\n");
} else if (offset == PCI_UDMA33_CTRL) {
offset -= PCI_UDMA33_CTRL;
offset += UDMACTL;
if ((offset + size) > (UDMACTL + 1))
panic("PCI write to UDMACTL with invalid size\n");
} else if (offset >= PCI_UDMA33_TIMING &&
offset < (PCI_UDMA33_TIMING + 2)) {
offset -= PCI_UDMA33_TIMING;
offset += UDMATIM;
if ((offset + size) > (UDMATIM + 2))
panic("PCI write to UDMATIM with invalid size\n");
} else {
panic("PCI write to unimplemented register: %x\n", offset);
}
memcpy((void *)&pci_regs[offset], (void *)&data, size);
}
// Catch the writes to specific PCI registers that have side affects
// (like updating the PIO ranges)
switch (offset) {
case PCI_COMMAND:
if (config.data[offset] & PCI_CMD_IOSE)
io_enabled = true;
else
io_enabled = false;
if (config.data[offset] & PCI_CMD_BME)
bm_enabled = true;
else
bm_enabled = false;
break;
case PCI0_BASE_ADDR0:
if (BARAddrs[0] != 0) {
pri_cmd_addr = BARAddrs[0];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(pri_cmd_addr,
pri_cmd_size));
pri_cmd_addr &= PA_UNCACHED_MASK;
}
break;
case PCI0_BASE_ADDR1:
if (BARAddrs[1] != 0) {
pri_ctrl_addr = BARAddrs[1];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(pri_ctrl_addr,
pri_ctrl_size));
pri_ctrl_addr &= PA_UNCACHED_MASK;
}
break;
case PCI0_BASE_ADDR2:
if (BARAddrs[2] != 0) {
sec_cmd_addr = BARAddrs[2];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(sec_cmd_addr,
sec_cmd_size));
sec_cmd_addr &= PA_UNCACHED_MASK;
}
break;
case PCI0_BASE_ADDR3:
if (BARAddrs[3] != 0) {
sec_ctrl_addr = BARAddrs[3];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(sec_ctrl_addr,
sec_ctrl_size));
sec_ctrl_addr &= PA_UNCACHED_MASK;
}
break;
case PCI0_BASE_ADDR4:
if (BARAddrs[4] != 0) {
bmi_addr = BARAddrs[4];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(bmi_addr, bmi_size));
bmi_addr &= PA_UNCACHED_MASK;
}
break;
}
}
Fault
IdeController::read(MemReqPtr &req, uint8_t *data)
{
Addr offset;
bool primary;
bool byte;
bool cmdBlk;
RegType_t type;
int disk;
parseAddr(req->paddr, offset, primary, type);
byte = (req->size == sizeof(uint8_t)) ? true : false;
cmdBlk = (type == COMMAND_BLOCK) ? true : false;
if (!io_enabled)
return No_Fault;
// sanity check the size (allows byte, word, or dword access)
if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
req->size != sizeof(uint32_t))
panic("IDE controller read of invalid size: %#x\n", req->size);
if (type != BMI_BLOCK) {
assert(req->size != sizeof(uint32_t));
disk = getDisk(primary);
if (disks[disk])
disks[disk]->read(offset, byte, cmdBlk, data);
} else {
memcpy((void *)data, &bmi_regs[offset], req->size);
}
DPRINTF(IdeCtrl, "IDE read from offset: %#x size: %#x data: %#x\n",
offset, req->size, *(uint32_t *)data);
return No_Fault;
}
Fault
IdeController::write(MemReqPtr &req, const uint8_t *data)
{
Addr offset;
bool primary;
bool byte;
bool cmdBlk;
RegType_t type;
int disk;
parseAddr(req->paddr, offset, primary, type);
byte = (req->size == sizeof(uint8_t)) ? true : false;
cmdBlk = (type == COMMAND_BLOCK) ? true : false;
DPRINTF(IdeCtrl, "IDE write from offset: %#x size: %#x data: %#x\n",
offset, req->size, *(uint32_t *)data);
uint8_t oldVal, newVal;
if (!io_enabled)
return No_Fault;
if (type == BMI_BLOCK && !bm_enabled)
return No_Fault;
if (type != BMI_BLOCK) {
// shadow the dev bit
if (type == COMMAND_BLOCK && offset == IDE_SELECT_OFFSET) {
uint8_t *devBit = (primary ? &dev[0] : &dev[1]);
*devBit = ((*data & IDE_SELECT_DEV_BIT) ? 1 : 0);
}
assert(req->size != sizeof(uint32_t));
disk = getDisk(primary);
if (disks[disk])
disks[disk]->write(offset, byte, cmdBlk, data);
} else {
switch (offset) {
// Bus master IDE command register
case BMIC1:
case BMIC0:
if (req->size != sizeof(uint8_t))
panic("Invalid BMIC write size: %x\n", req->size);
// select the current disk based on DEV bit
disk = getDisk(primary);
oldVal = bmi_regs[offset];
newVal = *data;
// if a DMA transfer is in progress, R/W control cannot change
if (oldVal & SSBM) {
if ((oldVal & RWCON) ^ (newVal & RWCON)) {
(oldVal & RWCON) ? newVal |= RWCON : newVal &= ~RWCON;
}
}
// see if the start/stop bit is being changed
if ((oldVal & SSBM) ^ (newVal & SSBM)) {
if (oldVal & SSBM) {
// stopping DMA transfer
DPRINTF(IdeCtrl, "Stopping DMA transfer\n");
// clear the BMIDEA bit
bmi_regs[offset + 0x2] &= ~BMIDEA;
if (disks[disk] == NULL)
panic("DMA stop for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer abort
disks[disk]->abortDma();
} else {
// starting DMA transfer
DPRINTF(IdeCtrl, "Starting DMA transfer\n");
// set the BMIDEA bit
bmi_regs[offset + 0x2] |= BMIDEA;
if (disks[disk] == NULL)
panic("DMA start for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer start
if (primary)
disks[disk]->startDma(*(uint32_t *)&bmi_regs[BMIDTP0]);
else
disks[disk]->startDma(*(uint32_t *)&bmi_regs[BMIDTP1]);
}
}
// update the register value
bmi_regs[offset] = newVal;
break;
// Bus master IDE status register
case BMIS0:
case BMIS1:
if (req->size != sizeof(uint8_t))
panic("Invalid BMIS write size: %x\n", req->size);
oldVal = bmi_regs[offset];
newVal = *data;
// the BMIDEA bit is RO
newVal |= (oldVal & BMIDEA);
// to reset (set 0) IDEINTS and IDEDMAE, write 1 to each
if ((oldVal & IDEINTS) && (newVal & IDEINTS))
newVal &= ~IDEINTS; // clear the interrupt?
else
(oldVal & IDEINTS) ? newVal |= IDEINTS : newVal &= ~IDEINTS;
if ((oldVal & IDEDMAE) && (newVal & IDEDMAE))
newVal &= ~IDEDMAE;
else
(oldVal & IDEDMAE) ? newVal |= IDEDMAE : newVal &= ~IDEDMAE;
bmi_regs[offset] = newVal;
break;
// Bus master IDE descriptor table pointer register
case BMIDTP0:
case BMIDTP1:
if (req->size != sizeof(uint32_t))
panic("Invalid BMIDTP write size: %x\n", req->size);
*(uint32_t *)&bmi_regs[offset] = *(uint32_t *)data & ~0x3;
break;
default:
if (req->size != sizeof(uint8_t) &&
req->size != sizeof(uint16_t) &&
req->size != sizeof(uint32_t))
panic("IDE controller write of invalid write size: %x\n",
req->size);
// do a default copy of data into the registers
memcpy((void *)&bmi_regs[offset], data, req->size);
}
}
return No_Fault;
}
////
// Serialization
////
void
IdeController::serialize(std::ostream &os)
{
// Serialize the PciDev base class
PciDev::serialize(os);
// Serialize register addresses and sizes
SERIALIZE_SCALAR(pri_cmd_addr);
SERIALIZE_SCALAR(pri_cmd_size);
SERIALIZE_SCALAR(pri_ctrl_addr);
SERIALIZE_SCALAR(pri_ctrl_size);
SERIALIZE_SCALAR(sec_cmd_addr);
SERIALIZE_SCALAR(sec_cmd_size);
SERIALIZE_SCALAR(sec_ctrl_addr);
SERIALIZE_SCALAR(sec_ctrl_size);
SERIALIZE_SCALAR(bmi_addr);
SERIALIZE_SCALAR(bmi_size);
// Serialize registers
SERIALIZE_ARRAY(bmi_regs, 16);
SERIALIZE_ARRAY(dev, 2);
SERIALIZE_ARRAY(pci_regs, 8);
// Serialize internal state
SERIALIZE_SCALAR(io_enabled);
SERIALIZE_SCALAR(bm_enabled);
SERIALIZE_ARRAY(cmd_in_progress, 4);
}
void
IdeController::unserialize(Checkpoint *cp, const std::string &section)
{
// Unserialize the PciDev base class
PciDev::unserialize(cp, section);
// Unserialize register addresses and sizes
UNSERIALIZE_SCALAR(pri_cmd_addr);
UNSERIALIZE_SCALAR(pri_cmd_size);
UNSERIALIZE_SCALAR(pri_ctrl_addr);
UNSERIALIZE_SCALAR(pri_ctrl_size);
UNSERIALIZE_SCALAR(sec_cmd_addr);
UNSERIALIZE_SCALAR(sec_cmd_size);
UNSERIALIZE_SCALAR(sec_ctrl_addr);
UNSERIALIZE_SCALAR(sec_ctrl_size);
UNSERIALIZE_SCALAR(bmi_addr);
UNSERIALIZE_SCALAR(bmi_size);
// Unserialize registers
UNSERIALIZE_ARRAY(bmi_regs, 16);
UNSERIALIZE_ARRAY(dev, 2);
UNSERIALIZE_ARRAY(pci_regs, 8);
// Unserialize internal state
UNSERIALIZE_SCALAR(io_enabled);
UNSERIALIZE_SCALAR(bm_enabled);
UNSERIALIZE_ARRAY(cmd_in_progress, 4);
if (pioInterface) {
pioInterface->addAddrRange(RangeSize(pri_cmd_addr, pri_cmd_size));
pioInterface->addAddrRange(RangeSize(pri_ctrl_addr, pri_ctrl_size));
pioInterface->addAddrRange(RangeSize(sec_cmd_addr, sec_cmd_size));
pioInterface->addAddrRange(RangeSize(sec_ctrl_addr, sec_ctrl_size));
pioInterface->addAddrRange(RangeSize(bmi_addr, bmi_size));
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IdeController)
SimObjectParam<IntrControl *> intr_ctrl;
SimObjectVectorParam<IdeDisk *> disks;
SimObjectParam<MemoryController *> mmu;
SimObjectParam<PciConfigAll *> configspace;
SimObjectParam<PciConfigData *> configdata;
SimObjectParam<Tsunami *> tsunami;
Param<uint32_t> pci_bus;
Param<uint32_t> pci_dev;
Param<uint32_t> pci_func;
SimObjectParam<Bus *> io_bus;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
END_DECLARE_SIM_OBJECT_PARAMS(IdeController)
BEGIN_INIT_SIM_OBJECT_PARAMS(IdeController)
INIT_PARAM(intr_ctrl, "Interrupt Controller"),
INIT_PARAM(disks, "IDE disks attached to this controller"),
INIT_PARAM(mmu, "Memory controller"),
INIT_PARAM(configspace, "PCI Configspace"),
INIT_PARAM(configdata, "PCI Config data"),
INIT_PARAM(tsunami, "Tsunami chipset pointer"),
INIT_PARAM(pci_bus, "PCI bus ID"),
INIT_PARAM(pci_dev, "PCI device number"),
INIT_PARAM(pci_func, "PCI function code"),
INIT_PARAM_DFLT(io_bus, "Host bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams)
END_INIT_SIM_OBJECT_PARAMS(IdeController)
CREATE_SIM_OBJECT(IdeController)
{
return new IdeController(getInstanceName(), intr_ctrl, disks, mmu,
configspace, configdata, tsunami, pci_bus,
pci_dev, pci_func, io_bus, pio_latency, hier);
}
REGISTER_SIM_OBJECT("IdeController", IdeController)
#endif //DOXYGEN_SHOULD_SKIP_THIS