d142788172
Should we add a proxy_port that does the v->p address translation? Should the proxy port return a fault on translation errors, if we add one? arch/alpha/alpha_linux_process.cc: Syscalls use a memPort through the CPU now instead of a xc functional memory. cpu/base.hh: Add a pointer to the memPort syscalls will use. Should this be a proxy_port that does address translation? cpu/exec_context.cc: cpu/exec_context.hh: Remove functional memory from the exec context cpu/simple/cpu.cc: Set the memPort to be used as the syscall port as the dcache port sim/syscall_emul.cc: sim/syscall_emul.hh: Syscalls use a memPort through the CPU now instead of a xc functional memory. Also, fix the fact that readStringFunctional doesn't return a fault... should proxy_port handle this because it is doing the translation? --HG-- extra : convert_revision : 1f65318c6594301a75dc4dc0c99fdd436b094a7f
466 lines
13 KiB
C++
466 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2001-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_EXEC_CONTEXT_HH__
|
|
#define __CPU_EXEC_CONTEXT_HH__
|
|
|
|
#include "config/full_system.hh"
|
|
#include "mem/physical.hh"
|
|
#include "mem/request.hh"
|
|
#include "sim/host.hh"
|
|
#include "sim/serialize.hh"
|
|
#include "targetarch/byte_swap.hh"
|
|
|
|
class Memory;
|
|
class BaseCPU;
|
|
|
|
#if FULL_SYSTEM
|
|
|
|
#include "sim/system.hh"
|
|
#include "targetarch/alpha_memory.hh"
|
|
|
|
class FunctionProfile;
|
|
class ProfileNode;
|
|
class MemoryController;
|
|
namespace Kernel { class Binning; class Statistics; }
|
|
|
|
#else // !FULL_SYSTEM
|
|
|
|
#include "sim/process.hh"
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
//
|
|
// The ExecContext object represents a functional context for
|
|
// instruction execution. It incorporates everything required for
|
|
// architecture-level functional simulation of a single thread.
|
|
//
|
|
|
|
class ExecContext
|
|
{
|
|
public:
|
|
enum Status
|
|
{
|
|
/// Initialized but not running yet. All CPUs start in
|
|
/// this state, but most transition to Active on cycle 1.
|
|
/// In MP or SMT systems, non-primary contexts will stay
|
|
/// in this state until a thread is assigned to them.
|
|
Unallocated,
|
|
|
|
/// Running. Instructions should be executed only when
|
|
/// the context is in this state.
|
|
Active,
|
|
|
|
/// Temporarily inactive. Entered while waiting for
|
|
/// synchronization, etc.
|
|
Suspended,
|
|
|
|
/// Permanently shut down. Entered when target executes
|
|
/// m5exit pseudo-instruction. When all contexts enter
|
|
/// this state, the simulation will terminate.
|
|
Halted
|
|
};
|
|
|
|
private:
|
|
Status _status;
|
|
|
|
public:
|
|
Status status() const { return _status; }
|
|
|
|
/// Set the status to Active. Optional delay indicates number of
|
|
/// cycles to wait before beginning execution.
|
|
void activate(int delay = 1);
|
|
|
|
/// Set the status to Suspended.
|
|
void suspend();
|
|
|
|
/// Set the status to Unallocated.
|
|
void deallocate();
|
|
|
|
/// Set the status to Halted.
|
|
void halt();
|
|
|
|
public:
|
|
RegFile regs; // correct-path register context
|
|
|
|
// pointer to CPU associated with this context
|
|
BaseCPU *cpu;
|
|
|
|
// Current instruction
|
|
MachInst inst;
|
|
|
|
// Index of hardware thread context on the CPU that this represents.
|
|
int thread_num;
|
|
|
|
// ID of this context w.r.t. the System or Process object to which
|
|
// it belongs. For full-system mode, this is the system CPU ID.
|
|
int cpu_id;
|
|
|
|
System *system;
|
|
// Memory *mem;
|
|
|
|
#if FULL_SYSTEM
|
|
AlphaITB *itb;
|
|
AlphaDTB *dtb;
|
|
|
|
// the following two fields are redundant, since we can always
|
|
// look them up through the system pointer, but we'll leave them
|
|
// here for now for convenience
|
|
MemoryController *memctrl;
|
|
// PhysicalMemory *physmem;
|
|
|
|
Kernel::Binning *kernelBinning;
|
|
Kernel::Statistics *kernelStats;
|
|
bool bin;
|
|
bool fnbin;
|
|
|
|
FunctionProfile *profile;
|
|
ProfileNode *profileNode;
|
|
Addr profilePC;
|
|
void dumpFuncProfile();
|
|
|
|
#else
|
|
Process *process;
|
|
|
|
// Address space ID. Note that this is used for TIMING cache
|
|
// simulation only; all functional memory accesses should use
|
|
// one of the FunctionalMemory pointers above.
|
|
short asid;
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Temporary storage to pass the source address from copy_load to
|
|
* copy_store.
|
|
* @todo Remove this temporary when we have a better way to do it.
|
|
*/
|
|
Addr copySrcAddr;
|
|
/**
|
|
* Temp storage for the physical source address of a copy.
|
|
* @todo Remove this temporary when we have a better way to do it.
|
|
*/
|
|
Addr copySrcPhysAddr;
|
|
|
|
|
|
/*
|
|
* number of executed instructions, for matching with syscall trace
|
|
* points in EIO files.
|
|
*/
|
|
Counter func_exe_inst;
|
|
|
|
//
|
|
// Count failed store conditionals so we can warn of apparent
|
|
// application deadlock situations.
|
|
unsigned storeCondFailures;
|
|
|
|
// constructor: initialize context from given process structure
|
|
#if FULL_SYSTEM
|
|
ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
|
|
AlphaITB *_itb, AlphaDTB *_dtb, FunctionalMemory *_dem);
|
|
#else
|
|
ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
|
|
Memory *_mem, Process *_process, int _asid);
|
|
#endif
|
|
virtual ~ExecContext();
|
|
|
|
virtual void takeOverFrom(ExecContext *oldContext);
|
|
|
|
void regStats(const std::string &name);
|
|
|
|
void serialize(std::ostream &os);
|
|
void unserialize(Checkpoint *cp, const std::string §ion);
|
|
|
|
#if FULL_SYSTEM
|
|
bool validInstAddr(Addr addr) { return true; }
|
|
bool validDataAddr(Addr addr) { return true; }
|
|
int getInstAsid() { return regs.instAsid(); }
|
|
int getDataAsid() { return regs.dataAsid(); }
|
|
|
|
Fault translateInstReq(CpuRequestPtr &req)
|
|
{
|
|
return itb->translate(req);
|
|
}
|
|
|
|
Fault translateDataReadReq(CpuRequestPtr &req)
|
|
{
|
|
return dtb->translate(req, false);
|
|
}
|
|
|
|
Fault translateDataWriteReq(CpuRequestPtr &req)
|
|
{
|
|
return dtb->translate(req, true);
|
|
}
|
|
|
|
#else
|
|
bool validInstAddr(Addr addr)
|
|
{ return process->validInstAddr(addr); }
|
|
|
|
bool validDataAddr(Addr addr)
|
|
{ return process->validDataAddr(addr); }
|
|
|
|
int getInstAsid() { return asid; }
|
|
int getDataAsid() { return asid; }
|
|
|
|
Fault translateInstReq(CpuRequestPtr &req)
|
|
{
|
|
return process->pTable->translate(req);
|
|
}
|
|
|
|
Fault translateDataReadReq(CpuRequestPtr &req)
|
|
{
|
|
return process->pTable->translate(req);
|
|
}
|
|
|
|
Fault translateDataWriteReq(CpuRequestPtr &req)
|
|
{
|
|
return process->pTable->translate(req);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
template <class T>
|
|
Fault read(CpuRequestPtr &req, T &data)
|
|
{
|
|
#if FULL_SYSTEM && defined(TARGET_ALPHA)
|
|
if (req->flags & LOCKED) {
|
|
MiscRegFile *cregs = &req->xc->regs.miscRegs;
|
|
cregs->lock_addr = req->paddr;
|
|
cregs->lock_flag = true;
|
|
}
|
|
#endif
|
|
|
|
Fault error;
|
|
error = mem->prot_read(req->paddr, data, req->size);
|
|
data = gtoh(data);
|
|
return error;
|
|
}
|
|
|
|
template <class T>
|
|
Fault write(CpuRequestPtr &req, T &data)
|
|
{
|
|
#if FULL_SYSTEM && defined(TARGET_ALPHA)
|
|
|
|
MiscRegFile *cregs;
|
|
|
|
// If this is a store conditional, act appropriately
|
|
if (req->flags & LOCKED) {
|
|
cregs = &req->xc->regs.miscRegs;
|
|
|
|
if (req->flags & UNCACHEABLE) {
|
|
// Don't update result register (see stq_c in isa_desc)
|
|
req->result = 2;
|
|
req->xc->storeCondFailures = 0;//Needed? [RGD]
|
|
} else {
|
|
req->result = cregs->lock_flag;
|
|
if (!cregs->lock_flag ||
|
|
((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
|
|
cregs->lock_flag = false;
|
|
if (((++req->xc->storeCondFailures) % 100000) == 0) {
|
|
std::cerr << "Warning: "
|
|
<< req->xc->storeCondFailures
|
|
<< " consecutive store conditional failures "
|
|
<< "on cpu " << req->xc->cpu_id
|
|
<< std::endl;
|
|
}
|
|
return No_Fault;
|
|
}
|
|
else req->xc->storeCondFailures = 0;
|
|
}
|
|
}
|
|
|
|
// Need to clear any locked flags on other proccessors for
|
|
// this address. Only do this for succsful Store Conditionals
|
|
// and all other stores (WH64?). Unsuccessful Store
|
|
// Conditionals would have returned above, and wouldn't fall
|
|
// through.
|
|
for (int i = 0; i < system->execContexts.size(); i++){
|
|
cregs = &system->execContexts[i]->regs.miscRegs;
|
|
if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
|
|
cregs->lock_flag = false;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
return mem->prot_write(req->paddr, (T)htog(data), req->size);
|
|
}
|
|
*/
|
|
virtual bool misspeculating();
|
|
|
|
|
|
MachInst getInst() { return inst; }
|
|
|
|
void setInst(MachInst new_inst)
|
|
{
|
|
inst = new_inst;
|
|
}
|
|
|
|
Fault instRead(CpuRequestPtr &req)
|
|
{
|
|
panic("instRead not implemented");
|
|
// return funcPhysMem->read(req, inst);
|
|
return No_Fault;
|
|
}
|
|
|
|
//
|
|
// New accessors for new decoder.
|
|
//
|
|
uint64_t readIntReg(int reg_idx)
|
|
{
|
|
return regs.intRegFile[reg_idx];
|
|
}
|
|
|
|
float readFloatRegSingle(int reg_idx)
|
|
{
|
|
return (float)regs.floatRegFile.d[reg_idx];
|
|
}
|
|
|
|
double readFloatRegDouble(int reg_idx)
|
|
{
|
|
return regs.floatRegFile.d[reg_idx];
|
|
}
|
|
|
|
uint64_t readFloatRegInt(int reg_idx)
|
|
{
|
|
return regs.floatRegFile.q[reg_idx];
|
|
}
|
|
|
|
void setIntReg(int reg_idx, uint64_t val)
|
|
{
|
|
regs.intRegFile[reg_idx] = val;
|
|
}
|
|
|
|
void setFloatRegSingle(int reg_idx, float val)
|
|
{
|
|
regs.floatRegFile.d[reg_idx] = (double)val;
|
|
}
|
|
|
|
void setFloatRegDouble(int reg_idx, double val)
|
|
{
|
|
regs.floatRegFile.d[reg_idx] = val;
|
|
}
|
|
|
|
void setFloatRegInt(int reg_idx, uint64_t val)
|
|
{
|
|
regs.floatRegFile.q[reg_idx] = val;
|
|
}
|
|
|
|
uint64_t readPC()
|
|
{
|
|
return regs.pc;
|
|
}
|
|
|
|
void setNextPC(uint64_t val)
|
|
{
|
|
regs.npc = val;
|
|
}
|
|
|
|
uint64_t readUniq()
|
|
{
|
|
return regs.miscRegs.uniq;
|
|
}
|
|
|
|
void setUniq(uint64_t val)
|
|
{
|
|
regs.miscRegs.uniq = val;
|
|
}
|
|
|
|
uint64_t readFpcr()
|
|
{
|
|
return regs.miscRegs.fpcr;
|
|
}
|
|
|
|
void setFpcr(uint64_t val)
|
|
{
|
|
regs.miscRegs.fpcr = val;
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
uint64_t readIpr(int idx, Fault &fault);
|
|
Fault setIpr(int idx, uint64_t val);
|
|
int readIntrFlag() { return regs.intrflag; }
|
|
void setIntrFlag(int val) { regs.intrflag = val; }
|
|
Fault hwrei();
|
|
bool inPalMode() { return AlphaISA::PcPAL(regs.pc); }
|
|
void ev5_trap(Fault fault);
|
|
bool simPalCheck(int palFunc);
|
|
#endif
|
|
|
|
/** Meant to be more generic trap function to be
|
|
* called when an instruction faults.
|
|
* @param fault The fault generated by executing the instruction.
|
|
* @todo How to do this properly so it's dependent upon ISA only?
|
|
*/
|
|
|
|
void trap(Fault fault);
|
|
|
|
#if !FULL_SYSTEM
|
|
IntReg getSyscallArg(int i)
|
|
{
|
|
return regs.intRegFile[ArgumentReg0 + i];
|
|
}
|
|
|
|
// used to shift args for indirect syscall
|
|
void setSyscallArg(int i, IntReg val)
|
|
{
|
|
regs.intRegFile[ArgumentReg0 + i] = val;
|
|
}
|
|
|
|
void setSyscallReturn(SyscallReturn return_value)
|
|
{
|
|
// check for error condition. Alpha syscall convention is to
|
|
// indicate success/failure in reg a3 (r19) and put the
|
|
// return value itself in the standard return value reg (v0).
|
|
const int RegA3 = 19; // only place this is used
|
|
if (return_value.successful()) {
|
|
// no error
|
|
regs.intRegFile[RegA3] = 0;
|
|
regs.intRegFile[ReturnValueReg] = return_value.value();
|
|
} else {
|
|
// got an error, return details
|
|
regs.intRegFile[RegA3] = (IntReg) -1;
|
|
regs.intRegFile[ReturnValueReg] = -return_value.value();
|
|
}
|
|
}
|
|
|
|
void syscall()
|
|
{
|
|
process->syscall(this);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
// for non-speculative execution context, spec_mode is always false
|
|
inline bool
|
|
ExecContext::misspeculating()
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif // __CPU_EXEC_CONTEXT_HH__
|